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TECHNICAL PAPER

NONLINEAR OPTIMIZATION WITH LINEAR CONSTRAINTS
USING A PROJECTION METHQD

I. INTRODUCTION

The solution to the extremization problem with a nonlinear objective and linear equality and inequal-
ity constraints has application to many fields of science and business. Extremization means either maximiza-
tion or minimization of an objective function with respect to a set of decision variables that may be required
to satisfy a set of equality and inequality constraints. Finding a solution that simultaneously satisfies the
constraint equations and extremizes the objective function is, in general, not a straightforward procedure.
To this end, many methods of extremizing functions have evolved.

Problems can be divided into two broad categories, linear problems and nonlinear problems. The
linear problems have a linear objective function and linear constraint equations which can be expressed in
the following general form:

extremize f(xl,xz,...,xn) =cyXp topxy o Fopx,

subject to

n
Z auxj—b1<0 . i= 1,...,k
=1

n
2 a%=b=0 , i=ktl k2, .. h
=1

n
2% = b;=0 , i=htl,.., m
=1

If the variables appear nonlinearly in either the constraints or the objective function, then the problem is
considered to be nonlinear and, consequently, is generally more difficult to solve. Within this class of prob-
lems consider these two subclasses: those where the nonlinearities appear only in the objective function, and
those where the nonlinearities can appear in both the objective and the constraint equations.

This paper addresses the problem described by a nonlinear objective function and linear constraints.
The solution technique is based on a method proposed by Rosen (1960) [1] called the Gradient Projection



Method. In this method, if any of the constraint equations are violated during the unidirectional search, a
projection method is used to generate a new feasible direction of search. The functions considered here will

be convex within the region of interest. The functions will also be of class C2 (first and second order partials
exist and are continuous). The feasible region is defined by a convex polyhedron formed by the linear con-
straint equations. Rosen’s method, unfortunately, requires the inverse of the matrix formed from the
normals cf the binding constraints. Binding constraints are the equality constraints and the violated inequal-
ity constraints that are treated as equality constraints. Rosen attempted to reduce the complexity of this
problem by updating the inverse matrix with a recursive method rather than recalculating it whenever there

was a change in the binding constraint set. This recursive method depends on the knowledge of (NTN)'I,
where N is the matrix of the normals of the binding constraints and NT is the matrix transpose [1]. Only

one hyperplane can be subtracted or added to the projection matrix! at a time. Table 1 shows the number
of computations needed to update the projection matrix for the subtraction of one constraint by the Rosen’s
method and the method proposed in this paper. This table does not include the computations that would be

required by the calculation of (NTN)'I. ‘The dimension of the projection matrix calculated by either method
is equal to the number of independent variables. The Rosen method does not calculate the projection matrix
with matrices of this dimension. The rank of the matrices of this method varies with the number of
independent binding constraints. The proposed method saves ‘operations by taking advantage of the matrix
symmetry. The last column in Table 1 shows the ratio of the number of operations required by the two
methods. This paper proposes a solution technique that does not require the calculation of the inverse of
the matrix of the normals of the binding constraints and, for a large number of problems, requires a smaller
number of computer operations than does Rosen’s method. The proposed method provides similar results
with fewer computations, thus in general reducing the computer time. This method is able to add or remove
many constraints at a time which the Rosen method does not. A comparison between the two methods is
seen in Figure 1 for the case where there are 20 independent variables.

Section II of this paper discusses the general nonlinear optimization problem subject to linear con-
straints. In Section III the problem of finding an initial feasible point is addressed. Phase I of the Two-Phase
Simplex Method is used to provide a feasible point when a user-provided starting point is infeasible or when
the problem includes equality constraints, since these must always be satisfied. Section IV discusses a tech-
nique for locating an extrema within unconstrained feasible space. The method is the Davidon-Fletcher-
Powell (DFP) which is a variable metric technique [2]. Section V analyzes the solution to the problem with
constrained extremum and presents the main thrust of the paper. The application of the gradient projection
method to locating constrained extrema will be discussed. The differences between the method proposed in
this paper and Rosen’s method will also be detailed. Section VI contains the conclusions. Appendices A and
B provide the user’s guide and the results of the test cases to which the program was applied. Appendix C
contains a description of the program used in this paper and Appendix D contains the program listing.

Il. STATEMENT OF THE PROBLEM

Let x;,i=1,2,...,n, be the coordinates of the point x in n-dimensional Euclidean space. Points in space

will be defined with superscripts, and elements of points will be defined with subscripts. Vectors will be
represented by columns of elements as

1.-An n x n real matrix P is called a projection matrix if and only if P = PTand PP=P.



TABLE 1. COMPUTATION COMPARISON FOR UPDATING PROJECTION MATRIX

Variables

10

20

40

COMPUTATIGNS x 10°

22

20

18

16

14

12

10

Total Number of Operations

Binding
Constraints Rosen Fox Ratio
2 707 55 12.9
4 1,167 410 2.8
6 1,787 710 2.5
8 2,567 1,010 2.5
2 2,512 210 12.0
4 3,832 1,530 2.5
6 5472 2,640 2.1
8 7432 3,750 2.0
10 9,712 4,860 2.0
12 12,312 5,970 2.1
14 15,232 7,080 2.2
16 18,472 8,190 2.3
18 22,032 9,300 24
4 13,662 5,840 2.3
8 24,062 14,240 1.7
12 37,022 22,640 1.6
16 52,542 31,040 1.7
20 70,622 39,440 1.8
24 91,262 47,840 1.9
28 114 462 56,240 2.0
32 140,222 64,640 2.2
36 168,542 73,040 2.3
ROSEN

Figure 1.
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XT will be defined as the transpose of the x vector. In this notation, the general maximizing nonlinear pro-
gramming problem with linear constraints can be expressed as:

max: f(x)= f(xl,xz, e xn),

subject to the linear equalities and inequalities of the form:
@) 'x-b;=0 , i=12,. k<n
@)fx-b;>0 , i=k+l,.p

The vectors ai, i=1,2,...,p, provide the constraint equation coefficients and the b;, i=1,2,...,p are scalars. The
symbol g; will represent the ith constraint. These constraints restrict the solution to k hyperplanes and p-k

half spaces. Their intersection, R, is a convex polyhedron called the feasible region. R consists of all the
points that lie on the equalities and within the half spaces. Points in the equality constraints will lie on the
boundary of this region. The constraints are assumed to be linearly independent. The problem is depicted in
Figure 2. The curves lines in Figure 2 are the level contours of f(x). This figure shows the linear constraints
29,83,84 < 0 and g{,85 = 0 which outline a feasible space that contains x*. Starting at the unconstrained

point x°, the search follows the gradient of f(x°) until a constraint is encountered at xl. The projection

search vectors p1 and p2 are calculated at x! and x2, respectively, as new constraints are encountered at
these points. A constrained optimum may be found at points that are not located at vertices in nonlinear
problems. Inspection of this figure shows that the optimum point x* occurs on constraint g3, away from a

constraint vertex.
I1l. FINDING A FEASIBLE POINT

Most iterative search methods require an initial starting point. These points must either be supplied
by the user or be generated by an initial point algorithm in the method. For linearly constrained problems
the Simplex method can be used to find an initial feasible point if one exists. Many nonlinear methods are
developed based on a quadratic function and extended to the general nonquadratic case by approximations
of the quadratic. For initial points which are not in the vicinity of the optimal solution, the function may
not be adequately represented by a quadratic approximation and the solution algorithm generally takes
longer to converge. If the user supplied initial point for linear constrained problems is not in R, then one
method of obtaining an initial feasible point is to use Phase I of the Simplex method. The initial point will
then lie on the boundary of R at one of the vertices formed by a subset of the constraints, and will auto-
matically satisfy the equality constraints if they are consistent.

4



Figure 2. Nonlinear projection optimization.

The Simplex method extremizes a linear objective function subject to the constraint set

Ax=b

and

where A is an m x n matrix and b is an m-dimensional vector.

The null space of an n x s matrix C is the subspace of all s-dimension vectors y such that

Cy=0

1)

Denote the subspace of the vectors that have this property by N(C). If x and y are members of this set, then



Cx+y)=Cx+Cy=0 ,
and if k is a scalar then
Ckx)=k(Cx)=0

Let N(C) be the null space of C and have dimension q. Then the set has q linearly independent
vectors which form the basis for the set defined by C. The column rank of a matrix is equal to the number
of columns minus the null space dimension. Let the basis of the null space of C be

This set can be extended to a basis for an s-dimensional space by adjoining wi , i=1,2.,,,.r vectors that are
linearly independent

where
qtr=s
Now every column vector x in C can be written

q T

x=E al-vi+2bjwj

=1 =1

Therefore,

q r q by
Cx=C3) aiv1+Cij WJ=Z ai(CV1)+E b; (Cw)
=1 i=1 i=1 i=1

Since Cvi =0 then

I
Cy =3 b; (Cw)
=1



Hence, the r vectors Ccw span the co-domain, These vectors are also linearly independent. If
ky(Cwl)+ ..k (Cw)=0 ,
then
Ch
where
h=kywl+. . +kw' . )
So h belongs to N(C) and is a linearly independent combination of the r vectors
q T
- i j
h= Z llV +ZkJWJ s
i=1 i=1
a contradiction.
The Simplex method of finding an optimal solution is an iterative update process that solves the
constraint equations for their vertices. The direction of the move from one vertex to the next is done in a

manner that increases or decreases the objective function depending on whether it is a minimization or
maximization problem. Letting z be the value of the objective function for the previous iteration,

2=z, f (optimizing vector)

The optimizing vector transforms the last value of the objective function zj to a new value z that is closer
to the optimal value. Let A be partitioned into matrices B and N such that

A=(BN)
where B is an m x m invertible matrix and N is an m x (n-m) matrix and the rank of A(B,N) is m. Let

XB

XN



where the partitions of x have the dimensions m and n-m, respectively, and where Xp is associated with the
B partition of A and xy; with the N partition of A. From (1)

Ax=(BN)Xx= Bxg + NxN
A basic solution will be given by x if

Xg = Blp

xN=0

If x > 0, then this represents a solution that satisfies all constraints and is called a basic feasible solution
(BFS). In general, only a small portion of the vertices will have to be examined in order to locate the optimal
solution to a linear objective function using the Simplex algorithm. The Simplex method requires an initial
feasible point. Given this, each succeeding vertex will also be feasible. When a better objective function
value cannot be found at any adjacent vertex and all xg; = 0, i=1,2,...,m, an optimum has been achieved.
Consider the following minimization problem:

min z = ch
such that

Ax=b

Given a basic feasible solution xgy,
XB B 1 b

XN 0

let CB be the coefficients in the objective function associated with the xp vectors and CN with the XN

vectors. The objective function z can be given by

B lp
z=cx= (CBT,C§) 0 = TB'lb



Let
= (xB,xN)T
be an arbitrary basic feasible solution. Then
xg= 0 , xN=0 ,
and
Ax =Bxg+NxN=b
Premultiplying by B! and rearranging
Xg = B lb- B'leN
or

=r-l -1.j
XB—B b~ Z: B aJxJ (3)
jeD

where al is the jth column vector in A and where D is the current set of indices of the nonbasic variables.
The objective function is

z= ch = c];pr + CNTXN = cl;r(B'lb - E B'lajxj) + Z CiXj
jeD jeD

Let z, represent the objective function at some arbitrary basic feasible solution. Then

z2=25- Z '(zj - cj)xj s 4
jeDb



where z; = cBTB'laj for each nonbasic variable. Since z is to be minimized, it can be seen from (4) that
whenever Z -G > 0 the objective function decreases by introducing some nonbasic variable into the basis

at a positive value. This rate of decrease will be the largest if we pick the most positive of these zj - ¢, say
Z — Ck- From (3)

Xg = B'lb—B'lakxk = lg—ykxk s

where b = B b and yk = B'lak. Then as xy increases positively from zero, the basis is modified as shown in
vector form

L L
XB1 by b
XB2 by vk
= - Xk - (5)
| *Bm] [ Pm j _yka

If yik < 0 i=1,2,...,m, then xp; increases as Xy increases indefinitely. If all yik = 0 then xj can increase
only until one of the xg; = 0 due to the x > 0 constraints. In the absence of degeneracy (degenerate solu-
tions are those where the value of at least one of the basic variables equals zero), b, = 0,1=1,2,...,m and then

%y = b /y;< > 0. From (4)
z=2z,~ (zk - ck)xk . ®)
From the choice of z ~ ¢y = 0 for a minimization problem,

z<zO

Substituting (6) into (5)
xp=b = v/y/ Oy, i=1.2..m

All other Xj = 0. From above, xg; = 0 becomes a nonbasic variable, and X = lgr/yrk has been added to

replace it, forming a new BFS. This new BFS will decrease the value of the objective function and will also
satisfy the constraints.

Phase I of the Simplex method requires the problem to be set up in the standard form [3]. This is
accomplished by the use of slack and artificial variables. Standard form is obtained when all variables are

10



non-negative, all of the constraints are equations, and all constants on the right-hand side are non-negative.
In this form, row column operations can be performed. In some problems, the coefficient matrix A may not
contain a full unit matrix of the same order as the number of constraints. This occurs when there are
equality and less than or equal to constraints. In this case no BFS can be obtained. Artificial variables can
be added to the constraints to augment A such that a BFS exists. Non-negative slack variables are intro-
duced as necessary to transform the set of less than or equal fo constraints into equalities. This set is then
examined to determine if a full unit matrix is present, If it is not, non-negative artificial variables are added
to the appropriate equations to create a full unit matrix. The Simplex method begins at the origin of the
primary decision variables with all of the vector b allocated to the artificial and slack variables. These arti-
ficial variables must be driven to a zero value in the final solution. In Phase I of the two-phase Simplex
method, the objective function is replaced with an objective function that sums the artificial variables. This
objective function will be minimized. Consider the following set of constraints:

X1—2X2+X3<11
—4X1 X2+X3>3
2X1—X3=—1

>0 i=123

The addition of non-negative slack variables x4 and xg allows the problem to be expressed in standard form:

x1—2x2+x3+x4=11
—4x1 +x2+2x3-x5=3
—2X1+X3=1

x>0 i=1,234,;

Artificial variables can be added to the last two equations to produce the required unit matrix. The Phase 1
Simplex method will reduce these artificials to a value of zero, if a BFS to the problem exists, and thus
remove them from the solution. From the previous example, after adding the artificial variables Xg and x-,
the Phase I problem is

Minz=x¢g+x7 ,
subject to
X'1—2X2+X3+X4= 11
-4X1 +X2+2X3—X5+X6=3

11




—2X1+X3+X7=1

x>0  i=1,2,3,45,6,7

This problem can be represented in the following tableau form:

cp Basis X1 %21 x3| X4 | X5 | %6 | X7 b

0 x4 |1 |21 ]1 oo fo |11
1 xg|-4|1 |20 [-1]1 |0 [3
1 x;|-2[o |1 ]o o |o |1 |1

C row 6 |-1]-3]0 |1 |O |O

The tableau is a representation of the problem in detached coefficient form. The cg column is made up of

the objective function coefficients of the present basic variables listed in the basis column. The coefficients

of the objective function are shown in the ¢j Tow. The columns contain all of the coefficients associated with

the variables with the exception of the € row. The columns that contain the present basic variables also con-
tain the unit matrix. The bottom row is called the cost row and EJ = - (CBaj)- The b column represents

the value of the basic variables listed on the same row. The program presented in the last section of the paper
addresses the problem of finding an initial feasible point. The most efficient way to accomplish this is
through the user’s organization of the constraints and variables. Nonstandard forms can usually be put into
standard form by simple substitutions or transformations. For example, in the case where

—°°<Xi<°° s

the substitution of

where

can be made. The scalar expression

lax| <b

12



can be expanded in the form

-b<ax<b
which can be used in the form

ax <b

-ax <b
Many other nonstandard forms can be standardized with similar substitutions or transformations.
1V. UNCONSTRAINED OPTIMIZATION

Section III discussed the problem of finding an initial feasible point. An initial feasible point is
essential to using the method proposed by this paper. Once a feasible point is found, a nonlinear optimiza-
tion method is then applied to the problem. The method proposed here uses the DFP method when the
present point is not located in any constraint hyperplanes and does not violate any of the constraints.

The advantage of combining the Rosen gradient projection method (1960) [1] with the DFP method
first introduced by Davidon (1959) and later modified by Fletcher and Powell (1963) [2] is seen in the rate
of convergence to the optimal solution. The DFP method, originally developed as a nonlinear unconstrained
technique [4,5,6], was adapted to a linear constraint method by Goldfarb (1969) [7]. The DFP method is
considered to be one of the most powerful of the nonlinear search techniques and was developed to solve
the quadratic function. The method becomes iterative when extended to nonquadratic nonlinear functions.
By using the Taylor series, it is possible to determine the value of a function in the neighborhood of a known
point. As the neighborhood becomes small, the Taylor series approximates a quadratic function. The smaller
the neighborhood the better the approximation. The DFP method combines the best features of the steepest
descent technique with those of the Newton method and with few of their drawbacks [8]. The steepest
descent technique generates a search vector using knowledge of the first partials of the objective function.
The negative gradient of the objective function is represented by the vector

[0£(x) ]
axl
~Vi)y=- | )

of(x)
ox

i 1

and points in the direction of the most rapid decrease of the objective function from the point x. Steepest
descent converges to the optimum solution slowly when the function is highly nonlinear. A Newton method
converges in a single step when operating on a quadratic objective function. This method requires that the

13




matrix of second partials be calculated and inverted at each iteration. The DFP method approximates the
Hessian inverse using only first partials, and improves this approximation at each step. This method gener-
ates the inverse Hessian after n steps in an n-dimensjonal quadratic problem. Like the method of conjugate
gradients, the algorithm of the variable metric DFP method is designed to extremize the following function

about an arbitrary point x°:
f=1/2x-x9TAx-x) , (8)

by conducting a sequence of one-dimensional line searches that begin at an arbitrary point x; and locate
improved points by the relation

xitl =iy ozipi , » )

where o4 is a positive scalar constant and pi is a search vector. The constant o is chosen so that xit1 is

located at the extremum along the direction of search. Since this extremum is located at a point %11 where
the gradient of the objective function is perpendicular to the search vector, their dot product is zero [8].

Let
y(e) = f(x! + o)

dy(eap/dey = (pH T vixitl) (10)

=0

The extremum along the direction of search occurs at the point xitl where the search vector is tangent to
a contour of the objective function as shown in Figure 3. From (8),

Vi) = Axi-x0) . (11)

Figure 3. Search vector and gradient at xitl

14



Using (9) recursively yields

n-1 .
=i+ opd | (12)

=1

Subtracting x°© from (12) and premultiplying by A,

n-1
A(xN-x%) = A(xl-x°) + > OI]Ap] . (13)
=1
Then from (11) and (13)
. n-1
V") = Vi) + 3 a]Ap]
i=1
or as a special case
vixitly = Vied) + wApt . (14)

Ifa pi can be chosen so that it is A conjugate to all other search vectors, i.e.,

ohHTap =0 , i#j , (15)

then two important results can be concluded. First, all of the search vectors p will be linearly independent,
and second, the quadratic form will be extremized in no more than n steps in n-dimensional space [9].
Define

pl=-HV{d) |, i=0,1,..,0-1 , (e

where H is an n x n symmetric positive definite matrix. Fletcher and Powell [2] proved that the iterative
search method developed by Davidon satisfies the condition specified in (15).

This method will be developed and some of its interesting properties discussed. H will always be
symmetric and positive definite if H, is chosen to be symmetric and positive definite and if Hi+ 1 is calcu-
lated by

15



Hip =H;+B;+C a7n

where Bi and Cjarenxn symmetric matrices that are calculated at each step. Using (17) recursively,

n-1 n-1
Hn=HO+Z Bj+z Cj . (18)
i=0 i=0
By choosing
n-1
= a-1
2 Bi=A
=0
and
n-1
2 C_] = —HO ’
=0

then (18) reduces to H = AL H,, is usually chosen to be I to assure that it is positive definite and

symmetric. The construction of B shows the importance of the A conjugacy as expressed in (15). The
individual Bj’s in (18) can be determined by this A conjugate condition. Let T be an n x n matrix with

columns consisting of the search vectors pi, i=0,1,...,n-1. Then

TIAT=D , (19)
where D is an n x n diagonal matrix. This follows from (15) since

dii= OHTAP =0 , i#j

The double subscripting of a variable will be taken to denote a matrix element. Since A is positive definite,

A'l exists and A can be solved from (19)

A= IpT-1= (D~ 17T)"1

16



Hence

A l=T1pI7T
and thus,

n-1

> B;=TD"ITT

=0

From linear algebra, the diagonal terms of D1 are 1/ d;;. Therefore,
n-1 n-1
Y Bi=3 (/dp piphT
=0~ =0
where
d;; = (ohTAp!
Substituting this last expression into (20) gives

B; = o) D)) TAp)

and substituting (14) into the denominator,

n-1 n-1
2 Bi= 2 @@ D) T(viedtl) - viedy)
=0 =0

or, in corresponding terms, let

B; = o5t (p) D/((oh T( Ve - ixdyy)

(20)

@en

(22)

17




for i=0,1,...,n-1. In a similar manner, Ci will be developed. Post-multiplying (17) with Api, we have
H;; Ap' = HiAp! + B,Apl + CiAp!
Substituting (21) into the middle right-hand term,
H;1Apt = HjAp! + (i) TApD)/ (o)) TApY + CAp!
=HAp +pl+ CAp! . (23)

If C; is chosen so that H; Api = pi, then pi is an eigenvector of H:,1A. Fletcher and Powell used this
i i+l itl
property to show quadratic convergence [2]. Using this result in (23)

CiApi = —HiApi .
Since (pi)TATHiApi is a scalar value, then
1= (o) TATH;APY/ (0 TATH;Ap)
Hence,
Ciapt = -H;Apl(ph TATH; AP/ (0) TATH; AP
or
C; = -HAp () TATH /(o) TATH,ApY
The last term in the numerator is a result of the symmetry of H. Again, using (14)
C; = ~H(VE*) - v e vt - vied)TH D/((vit - v THy(vied*!) - viedy))
The third term in the numerator follows from the symmetry of A and from the linear algebra identity
pTAT=apT .

18



The search algorithm of (9) with the a search vector defined by the relationship
pl=-H, Viz}) ,

where Hi is updated according to (18) and where the exact step oy is found along each search vector, will

converge to the extremum of a quadratic in no more than n steps in n-dimensional space. Examination of
the Taylor’s series expansion of a nonquadratic nonlinear function around the optimal solution shows that
as the solution approaches the optimal solution, the function becomes dominated by the quadratic terms.
In the program presented in this paper, the constant oy is'only an approximation of the exact distance from

x! to the extremum along pi. The usual method for calculating o is to curve-fit the points that bracket or

lie in the vicinity of this extremum, This program uses a quadratic fit. No effort was made to determine the
consequences of this error on the rate of convergence. The H matrix is reset to I, since H may tend to
accumulate errors due to numerical truncation and also due to the errors caused by not finding the exact
extremum point along each search vector. In this latter error source, the slight inaccuracy causes the dot
product between the search vector and the gradient of the function at that point to differ from zero, and it
is also generally necessary to use double precision to reduce the truncation problem. These errors will
accumulate in the H matrix at each update. A decision must be made to reinitialize the H matrix after a
number of updates. The usual practice is to reset the H matrix to I after n steps in an n-dimension space.
The first search vector after this update is the negative gradient of the objective function. Hence, after every
n steps when H = I, there is a search taken in the direction of steepest descent.

The advantages of the DFP method lie in the convergence properties that approximate the Newton
method while using only first order information similar to the steepest descent method. H only approxi-

mates A~! closely after n steps. The combining of the unconstrained search with the projection technique by
Rosen allows a search of the feasible region R. Unlike linear programming methods, which are constrained to
examine only the vertices, this method is free to traverse interior feasible space.

V. CONSTRAINED OPTIMIZATION

Section IV discussed a method of nonlinear optimization for problems that have no constraints.
Many nonlinear problems do have linear constraints, however, and this section will address this type of
problem.

The projection method is used at the boundaries of a convex polyhedron where the extremum lies
outside or on the boundaries of the feasible region R. This method is based on the projection of the gradient

of a nonlinear function onto these boundaries [10]. The space E™ is defined as a Euclidean space of dimen-
sion m and contains a subspace that is spanned by the normals of q binding constraints. The normals of these
binding constraints are the column vectors of a matrix Nq, where the subscript q denotes that the matrix is

an m X q matrix. The symbol g; will designate the ith hyperplane associated with the ith constraint. The
matrix

Ty 1N T
(Ng™Ng)™ Ng
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is used as pseudo-inverse of the matrix Nq. Let a set of q linearly independent unit vectors u, i=1,...,q <m,

be normals to a set of q linearly independent hyperplanes. Let
N, =@l u? .. ud) . (24)

q

Because of the linear independence of the q vectors, the q x q symmetric matrix NqTNq is nonsingular, and

therefore its inverse (NqTNq)'1 exists. Let Q be a subspace of E™ that is spanned by the vectors ul,uz,...,

ud. Let V be the orthogonal complement of Q in E™, Then V is a subspace of dimension (m-q). Rosen’s
projection method uses a matrix given by

P = Tn Vi T

Pq Nq(Nq Nq) Nq (25)
that projects a general vector in E™ onto Q. To show this, let v € V. Since V is orthogonal to Q,

whlv=0 , i=1,..,q

or

Using this in (25),

qu=0

In Q let w be a vector, which can then be represented as a linear combination of the q vectors that span Q.
Then

q
w=3ag (26)
i=1

and from (24),
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where the vector a is the column vector of the coefficients in (26). Therefore,

Y - Ty 1 T
qu Nq(Nq Nq) Nq Nqa

Il

Nqa

These results show that Fq is a projection matrix that takes any vector in E™ into Q. Let Pq be defined by

Pq=I—Pq

If v and w are defined as before, then

qu=v—qu=v—0=v

and

qu=w—qu=W—w=0
From this, any arbitrary vector, x € E™, decomposed as

X=V+w

is projected onto the intersection of the q hyperplanes. It is also clear that if ¢ = m, then Pq =T and

From vector analysis, the projection of a vector z onto the ith hyperplane where V n;(x) is the normal to
this hyperplane is

pi =z-d; Vny(x)
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The variable d; is a scalar constant. Figure 4 depicts this where z = V{(x). If p is specified to be the projec-

tion onto Q, then

q
p=Vix)- Y d; Vn; (x)
i=1

The projection p will lie along the intersection of the q hyperplanes.

A Langrangian function L is a scalar function of x and A\ where, if A, is a scalar multiplier and h;(x)
designates the ith equality constraint, then

5 2
LxN) = Vi) + 20 V() + 3 A Vh(x)
i=1 i=stl

At a constrained extremum, the gradient of the Lagrangian vanishes [8,11] and since }‘i = 0 for nonbinding
constraints,

S L
VL = Vi(x) + z A Vny(x) + Z A Viy(x)=0
i=1 i=stl

T (x)

l Vni(x)

Figure 4. Projection of Vf(x) onto hyperplane gj-
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Upon substituting the d;’s for )\i’s, the equivalency between the Lagrangian and the projection equation is
obvious. The Kuhn-Tucker [12] conditions show that, if the di’s have the proper signs, then

s Q
p=Vi(x)- 3 d; Vn;x)- 2. d; Vhy(x)=0
=1 i=s+1

at a bounded optimum. Thus, the projection vector p vanishes at this point. The Kuhn-Tucker conditions are
based on Farkas Theorem [12,13] which states that only one of the two following systems has a solution:

System: 1 Ax<0 and ¢cx>0
or
System: 2 wlA=c and w>0

where A is a given m X n matrix, c is a given vector of dimension n, and X,w are variable vectors of dimen-
sion m and n. The first part of the proof of this will be by contradiction. If System 2 has a solution w such

that wlA = ¢ and w > 0, let x be such that Ax < 0. Then cTx = wTAx < 0 which contradicts the given
statement. If System 2 has no solution, then ¢ ¢ S = (wTA:w>O). There is some x such that ch > wTAx
for all w > 0. If w = 0 then cTx > 0, and as w approaches infinity Ax <0 completing the proof. The Kuhn-
Tucker conditions follow from this theorem [14]. Let Z be a nonempty open set in E™, and let f :Em—>El,
n:EM>E! for i=1,..;s, and h:EM-E! for i=s+1,..,1. Consider the problem L where n;(x) is the ith

constraint equation.

Min f(s)
such that
nx)<0 , i=1,2,..,s
hix)=0 , i=stl, .., 1
and

xeZ

Let x be a feasible solution, and let I = (i:nj(x) = 0). Suppose that f and n, for i ¢ I are differentiable at x,
that n; for i € I is continuous at x, and that hi for i=s+1,...,1 is continuously differentiable at x. Further

suppose that Vni(x) for i € I and Vh(x) for i=st1,...,1 are linearly independent. If x* solves problem L
locally, then there exist scalars A; for i=1,...,1 such that
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2
VEx*) +3 AFVnx*) + 2 AFVhy(x*)=0
iel i=st1
and

N*=0 , el

In addition to the above assumptions, if n; for i ¢ I is also differentiable at x, then the Kuhn-Tucker condi-

tions could be written in the following equivalent form:

S Q
VE(x*) + E )xi*Vni(x*) + Z )\i* Vhi(x*) =0
i=1 i=s+1

A*ni(x*)=0 , i=1,.s

This shows that V{(x*) is a linear combination of the normals to the constraints. These normals describe a
cone which contains the function gradient. If A is the matrix of the constraints, then by Farkas Theorem,
the intersection of the half space defined by Ax < 0 and the open half space cx > 0 is empty and therefore
has no solution. A geometric interpretation is shown in Figure 5. If some d; = 0 or has the wrong sign, then

the associated constraint hyperplane is nonbinding and must be dropped from the set used to define the
projection matrix. At x* the gradient of the Lagrangian vanishes when V{(x*) becomes a linear combination
of the binding constraints. The projection scalar d and the Lagrange multiplier A are equivalent.

Figure 5. Graphical display of Farkas Theorem.
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The number of computations to determine (NqTNq)'l is formidable when Nq is very large. If this
inverse was recalculated each time a change was made in the defining set of gi’s, the required computer time
could become prohibitive. Rosen used a recursive scheme to update the (NqTNq)'1 matrix rather than

recalculating it each time a change was made in the binding constraint set. Although this method greatly
reduced the amount of computation necessary to calculate a new inverse, it can remove or add only one
constraint at a time.

In this paper, a method is presented that projects an arbitrary vector x € E™ onto a subspace Q C
E™ without the necessity of calculating an inverse. For a projection onto a hyperplane, it is necessary to find
an exact point in the constraint hyperplane at which to calculate the gradient of the objective function.
This gradient will then be projected onto the intersection of the binding constraints. The development of
this method follows.

A search along the vector H! Vf(x!) is made using a scalar multiplier o!. Let

xitl = xi 4 il Vi) (27)

where the superscripts denote specific iterations. Suppose that at some iteration at least one constraint is

violated by the point xiﬂ. Let this constraint be the jth hyperplane.
alj x1i+1 + a2j X9 il 4 amj xmi'*'1 = bj . (28)
Substituting (27) into (28) gives
apioe+ odHEVEGd) ) + 2y ()1 + o HE VE(xE)) + ..+ 2 Jxp !+ o HEVEGD), )= by
where Hi Vf(xi)k is the kth element of the search vector. Upon gathering terms
(@) Txl + () TH VE(x) = b;
Then
olia)) TH Vi) = b; - (@) Txd
Since (ai )THi Vf(xi) is a scalar, ol can be computed as

od = (b; - @) Txhy/(@) TH viGely)
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This ol is used to characterize the distance from x1 to a point at the intersection of the search vector and
each constraint hyperplane that is violated by xiﬂ. In the case where x! is an interior point in feasible space
and xit1 is an exterior point, the smallest od would be selected. The selected od will be denoted as a*. The
knowledge of ol will be used to eliminate the nonbinding constraints along a search vector. Figure 6 shows
graphically that the search vector pi from xi may intersect many constraints, Note that g3 should be the

only binding constraint and also has the smallest o,

93 %

Figure 6. Intersection of search vector and constraints.

The method of calculating the projection matrix was developed from the well-known Gram-Schmidt
technique [15]. All the Vni(x)’s of the binding constraints span the g-dimensional space Q. From abstract

algebra it is known that the basis of Q is not unique and by employing the Gram-Schmidt method an ortho-
normal basis for Q can be derived. Choosing g as an arbitrary element of the constraint manifold, other

elements can be found by the method used by A. O. Morris [16] :
11 = an(x)
i2= Vi () - (Vi g T ilyil/nt 2

(29)
%= Vi 90 - (Vi 00T il il /12 - (vng 00T 12) 12716212

9= Vn () - (an(x)T iyl - ... - (an(x)T ia-1ya-1/30-1)2

26




The 13 vectors are changed to a unit vector by replacing each i by its unit vector where
W =i/

The projection of V{(x), where X is a point in the intersection of the q constraint hyperplanes, onto this
vector set will be

p=-ul@hT -u2w?T - .. - uluHT) vix)
Let
q . .
A=Y WahT
=1
Then

p=(01-A) Vi)

The method of calculating this A matrix is crucial to the efficiency of the method. From (29) it can be seen
that the Gram-Schmidt method is also a projection of each succeeding Vni(x) upon the previous vector set.

Using this, the following recursive method was developed to update A:

= 1-A) v . (30)
This vector is normalized to a unit vectors as before. Then

A =Ai+ui+1 (ui+1)T . 31

When updating A by the addition of constraints, they can be added to the A matrix in any order, The
removal of constraints is not so simple. In the algorithm, all elements of the A matrix are set to zero and
are then recalculated. Some of the previous computational work is saved which allows a portion of the A
matrix to be recalculated with very little computation. Each iteration that updates the projection matrix has
the same properties as the Gram-Schmidt method in that it is sensitive to the order in which the vectors are
used in the algorithm. Because of this, the algorithm does not produce a unique projection matrix at inter-
mediate steps. To eliminate a constraint, simple subtraction cannot be used. The vectors must be removed
in the reverse order in which they are added. This continues until all the nonbinding constraints have been
removed. This process will also remove some binding constraints which must then be re-added. The same
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number of operations are required to remove a vector as to add a vector. If the vector to be removed had
been added at the mid-iteration of the algorithm then, as many operations would be required to remove the
constraints in reverse order and then regenerate the matrix, as generating the entire projection matrix would
require. To minimize the computational effort to regenerate the projection matrix, the program presented
saves the u’s of the appropriate binding constraints. By zeroing all elements in the projection matrix and
updating it with only the active constraints, the effect is the same as that of dropping all the nonbinding
constraints at once and adding only the binding constraints.

VI. CONCLUSIONS

The theoretical development for the method of nonlinear optimization presented in Section IV
shows the applicability of this method and some of the advantages over the Rosen method. The method
proposed by this paper provides similar results with fewer computations per iteration. It has been noted

earlier that the method presented here eliminates the need to calculate (NTN)'1 as required by the Rosen
method. This not only saves computer time, but avoids a potentially formidable matrix inversion problem
as the system becomes large. Another advantage of the method proposed here is that there is no limit to the
number of constraints that can be simultaneously added or removed from the binding set. The Rosen

method is limited to one addition or removal at a time.

A computer program was developed which implements this method. It is constructed in a modular
format to facilitate understanding and provide efficiency in application. The program was applied to a
variety of test problems and was successful in finding the optimum in each case. These cases were chosen to
evaluate the program’s ability to converge while encountering some of the difficulties that are inherent in
projection methods. A good comparison between this method and the one used by Rosen could not be made
because of possible differences in the type of computer used and the programming structure. The program’s
computer run time is strongly dependent on the techniques used in the line search and the speed and register
capacity of the computer. The cases were chosen not as a comparison to problems worked by other pro-
grams, but to demonstrate the abilities of this program. The only direct comparison is based on the number
of computations required by each method to update the projection matrix. This should provide some idea
of the relative speed of operation during the calculation of the projection matrix. Table 1 in Section I shows
that the method proposed by this paper should be more efficient with computer time when calculating the

projection matrix.

An area of future research would be an investigation of the differences of the projection matrix used
by the two methods. A preliminary look at the projection matrix generated by each method for several
cases showed that they were the same. If the two methods do generate the same projection matrix for all

cases, this should be proven rigorously.
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APPENDIX A. USERS GUIDE

The computer program for the solution method developed in this paper requires two subroutines
and a data deck to be supplied by the user. The two subroutines are incorporated into the program as sub-
routines called FUNCT and GRAD. They take the following form:

SUBROUTINE FUNCT(X,F,N1)

DIMENSION X(N1)

F = Objective function

RETURN

END
and

SUBROUTINE GRAD(X,G,N1,NUM)

DIMENSION X(N1),G(N1)

G(1)=the first gradient element (3f(x)/0x)

G(N1)=the N1th gradient element (9 f(x)/ale )
DO 11=1,N1
1 G(I) = NUM*G(I)
RETURN
END
where
N1 is the number of independent variables
F is the function to be extremized
X(i) is the ith variable element
G(i) is the ith gradient element of F
NUM=1 for maximization and = -1 for minimization.
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The coefficients and right-hand side constrant value for the system of linear constraints is read into
the program from the data deck with the initializing data. The description of each of the data cards follows:

DATA CARD 1:

(MAX/MIN),N1,NN,NC,EP1,EP2 NLEC,NEC,NGEC,NGEX

These are read according to FORMAT(A3,313,2E14.7,413) where

MAX for maximization or MIN for minimization problems

N1 Number of variables in the problem

NN Maximum number of unconstrained iterations allowed. This will limit the number of
iterations in case of slow convergence to the solution for the unconstrained DFP method.

NC NLEC+NEC+NGEC+NGEX

EP1 If IF(xi+l)—F(xi)| < EP1; EP1 is typically = 0.0001 and detects small changes in the
function value. This is a condition for convergence.

EP2 If I VF(xiH)lI < EP2; EP2 is typically equal to 0.0001 and is the norm of the function
gradient. It is also used as a condition for convergence.

NLEC The number of < constraints

NEC The number of = constraints

NGEC The number of > constraints (excluding NGEX)

NGEX The number of x; = 0 i=1,2,...,n constraints.

DATA CARD 2:

X0(),I=1,N1

X0 is the initial point and is read according to FORMAT(10E13.6). If NC=0 (unconstrained problem), the
following data cards are omitted.

DATA CARD 3:

BC(1),I=1,NC

BC(I) provides the right-hand side of the constraints. The BC(I) values must be provided in the following
order (1) less than or equal to constraints, (2) equality constraints, (3) greater than or equal to constraints,
and (4) nonnegative variable constraints. This ordering is illustrated by the following example:
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g(x)<b i=1,2,..NLEC
gj(x) =b j=1.2,..,NEC
g(x)=b k=1.2,.. NGEC
gp(x)=x9=>0
The BCs represent the b values and are read according to FORMAT(10E13.6). The problem requires a

standard formulation such that X3 =0 for all i.

DATA CARDS FOR CONSTRAINTS:

The coefficients for each of the constraints are read according to FORMAT(10E13.6). The order for
the constraints must match the order for the right-hand side constants on data card 3. All coefficients must
be included, i.e., N1 coefficients for each constraint including zeroes.

Example problem and corresponding user input:

Consider the following example:

max F = (x| - 3)2+ 9)x, - 5)2

X0=(0.5-1.2,)

Such that

2% +x9 <20

X] +2x9 <40

X1 +2x) <30

9x1 + 6x2 =100

\Y

Xl 0

SUBROUTINES:

SUBROUTINE FUNCT(X,F,N1)
DIMENSION X(N1)
F=(X(1)-3.)**2+9.*(x(2)-5.)**2
RETURN

END
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SUBROUTINE GRAD(X,G,N1,NUM)

DIMENSION X(N1),G(N1)

G(1)=2.%(X(1)-3.)
G(2)=18.%(X(2)-5.)
DO 1I=1,N1

1 GI)=NUM*G(I)
RETURN

END

DATA CARDS

MAX 2 70 6

0.5 -1.2

20. 40. 30.
2. 1.

1 2.

1 2.

9. 6

1 0.

0. 1
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APPENDIX B. TEST PROBLEMS

This section presents the results of several test problems that were solved with the technique
developed in this paper. Unconstrained problems were selected to test the DFP method. Linearly constrained
problems were then selected to test the projection technique. The program was initialized at infeasible points
for some cases to test the algorithm that generates a feasible starting point.

UNCONSTRAINED TEST PROBLEMS AND RESULTS

The following optimization problems were unconstrained. The program uses the DFP method with
the approximate Hessian inverse matrix reset to I after N+1 steps. The restrictions for x; = 0 are relaxes for
the unconstrained problems in which NC = 0.

T1: BANANA FUNCTION

N-1
MIN f(x)= 3 [100(xj41 - X;2)2 + (1 - x)2]
i=1

The starting point with N = 3 is x© = (-1.,0.,-1.). The minimum was found after 73 iterations of the DFP
method. The program execution time was 0.1125 min on a SIGMA-V computer. The minimum point of the
objective occurred at x* = (1.,1.,1.) with f(x*) = 0.0. This problem is also known as Rosenbrock’s Function
when N = 2, The Banana function is considered to be a severe test for nonlinear optimization algorithms due
to the steep valley generated by the coefficient value of 100.

N-1
T2: MINf(x)= 3 [10(xjy1 - %22 + (1 - xp?]
i1

The starting point with N = 3 is x° = (6.67,6.67,0.). The minimum of the objective occurred at x* =
(1.,1.,1) with f(x*) = 0.0. This problem is similar to T1. The difference is the reduced steepness of the

valleys formed by the (xj;1 - xi2)2 terms. Computer time for execution was 0.0284 minutes and the number
of iterations was reduced to only 12.

T3: MIN f(x) = (x| - 3)2 + 9(x, - 5)%

The starting point is x° = (1.,1.) and the minimum occurred at x* = (3.,5.) with f(x*) = 0.0. Three iterations
of the DFP method were performed. The computer time for execution was 0.0159 minutes.

10
T4: MIN fx)= 3 (x - 10)2
i=1
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The starting point is x° = (0.,1.,2.,3.,4.,5.,6.,4.,2.,4.). The minimum occurred at x* = (10.,10.,10.,10.,10.,
10.,10.,10.,10.,10.) with f(x*) = 0.0. Only one iteration of the DFP method was required since this is a
spherical function. The total execution time was 0,0292 minutes.

CONSTRAINED TEST PROBLEMS AND RESULTS

For these problems the iterations when using a projected search vector are separated from those of
the DFP method. The Gradient Projection Method makes no use of the Hessian (or its inverse). For the
constrained problems, once the solution sequence encountered the boundary of feasible space, it remained
on the constraint manifold. All these examples were initialized outside of feasible space in order to test the
routine that finds a feasible initial point.

2
T5: MIN f(x) = 3 [100(xj31 - %) + (1 - x;)?]
i1

subject to
2x) + X5 +x3<20
X1 +2x9 +4x3 <40
X1 +2x9 +2x3 <30
9x1 + 6x9 +x3 =100
10x; +20x5 +x3 > 100

x>0 , i=1723

The minimum of the objective occurred at x* = (6.67,6.67,0.) with f(x*) = .33E+6. The search terminated
at this point due to satisfying a program convergence test. Since it is not possible to.drop equality con-
straints from the projection matrix, the last point is taken as a constrained extremum. The minimum was
found with two projection iterations and no DFP iterations. The total execution time was 0.0630 minutes.

2
T6: MAX £(x) = 3 [100(x;4] - %;2)% + (1 - x;)?]
=1

The constraints are the same as those in T5. The maximum was found at x* = (1.67,14.17,0.) with f(x*) =
.34E+6. At this point a constrained maximum occurred caused by the restriction of not dropping the
equality constraints from the projection matrix. This demonstrates the ability to move around on the
equality constraint manifold in the search for an extremum. This point was found after three projection
iterations and no DFP searches. The execution time was 0.1186 minutes.
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T7: Max[T1]

such that
2x1 +x2+4x3 <20
X1 +2x2+4x3 <40
X1 +2X2+2X3 <30
9X1 +X2+X3<100
lOX] + 20X2 + X3 > 100

x>0 , i=123

The constrained maximum was found at x* = (0.,15.,0.) with the value of f(x*) = .65E+5. The maximum
was obtained in one projection search, and the program execution time was 0.0703 minutes.

The results for T5, T6, and T7 are shown in Figure B-1. The tests T5 and T6 have an equality con-
straint that the extremum is required to satisfy. The equality constraint is constraint number 4. The test T7
had no equality constraints and the extrema for this problem was found at a vertex. The equality constraint
was changed to an inequality. The test TS5 is a minimization and the test T6 is a maximization of the objec-
tive function which explains why the extrema are found as far away from each other as possible and still
lie on the equality constraint.

T8: MIN[T7]

The constrained minimum was found at x* = (2.8,3.5,2.7) with f(x*) = .1E+5. The minimum was found
after eleven projection iterations. The execution time was 0.1020 minutes. Constraints 1 and 5 are binding

as shown in Figure B-2. The initial point was x° = (0.,5.,0.). From this point the search proceeded along
constraint 5 until constraint 1 was encountered. The minimum of the objective function was found in the
seam formed by constraints 1 and 5.

T9: MIN [f(x)=5¢ 16 + x,x,3 in(2(x~)) + x<2 - 10
T9: [f(x) = 5e X9Xgq” - X3 sin(2(x7)) + x5* - XgX5]
such that

X2+10X4+X8<35

X3—5X5+X6—X7-<8

x1+x3+x6<10

X, +X +3x4+x5+7x7<200

1 2
—X2+ 15X3+X6—X7+3X8=25
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Figure B-1. Optimal points for problems T5, T6, and T7.

Figure B-2. Optimal point for problem T8.




X4 - X5+ 5x¢ - 10xg = 27

-3X9 - 8X3 + x5 + 6x7, > 10

X1 + 15%5 + x5+ 8xg > 17

X] = 2X9 - 8xg3+5x4 + X5~ Tx¢ + 10x7 + 3xg > 50
, i=1,2,...,8

The starting point x® = (-1.,0.,-1.,0.,-1.,0.,-1.,0.) was outside the feasible region and the program generated
a new starting point x° = (0.,0.,1.89014,3.5,0.,4.7,8.05211,0.). The minimum of the objective function

occurred at x* = (0.,0.,1.89014,3.5,0.,4.7,8.05211,0.) with f(x*) = 5.727. This constrained minimum was
found after six projection iterations. The extremum was found in constraints 1,5, 6,9, 10, 11, 14, and 17.
The execution time was 0.1224 minutes. This is a vertex of the constraints.
T10: MIN [f(x) = (xq - 18)2 + (x5 - 18)2]
such that

—20)(l + 4x2 <20

—4.7x1 + 2x2 <14

—1.5X1 + X2 < 11

-2x1 +2x, <20

O.4x1 + 2x2 <40

2x1 +0.4x9 <42

X1>O s

i=1,2.

The starting point was x© = (0,0) and the minimum point was x* = (17.54,16.49) which is a vertex. Figure
B-3 shows the search path the program followed to acquire the constrained extremum. This shows the
advantage of the nonlinear method over the Simplex method for some problems in that it can traverse
feasible space. A Simplex method would have taken five more iterations. The execution time was 0.0109
minutes.
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SIMPLEX PATH ~|
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Figure B-3. Advantages of a nonlinear over a linear search.



APPENDIX C. PROGRAM DESCRIPTION

Appendix C contains a brief description of the function of each subroutine of the program and how
they interact. The description of each subroutine generally follows the order that data flows through them.
In some cases the logic flow in the program is controlled by flags that are passed between subroutines. The
program is modular with each of the modules or subroutines generally performing one logical function.
Examples of this are found in the MAIN program where the DFP method is located or in subroutine SEEK
where the line searches are performed.

MAIN PROGRAM

The main program initializes the parameters, which include the number and type of each constraint,
and assesses the supplied initial starting point to determine if it is in feasible space. If it is not or if the
problem includes any equality constraints, the MAIN program calls SUBROUTINE FEASPT to internally
generate an initial starting point in feasible space. The program then calls SUBROUTINE FUNCT and
SUBROUTINE GRAD to get initial values for f(x) and V{(x). The Hessian is initialized to I and SUBROU-
TINE SEEK is called. For the case where the extremum of the function is located in feasible space or where

there are no constraints, then SEEK returns new values for x!, f(x!), and Vf(x!) that represent an approxi-
mation to the line search extremum. These values are used to calculate an update Hessian matrix. The pro-
gram tests the new point against the criterion for a local extremum. If it has not satisfied this criterion
another search direction is generated and another line search is made. This continues until a local extremum
is found or until the maximum iteration limit is acquired. In the case where the extremum is not located in
feasible space, the constrained extremum point will be returned to MAIN from SUBROUTINE CHK for
printing and program exit.

SUBROUTINE FUNCT and SUBROUTINE GRAD

These are discussed together since they are both user supplied subroutines. The equation for f(x)
is supplied by the user in FUNCT, and the gradient functions V{(x) are given in GRAD. The gradient vector
returned from GRAD has the proper sign for maximization or minimization.

SUBROUTINE SEEK

This subroutine calculates the DFP search vector when the search is being conducted from the
current search point which is unconstrained. When constraints are determined to have been violated, the
search vector is supplied by SUBROUTINE CHK. The program is sensitive to the magnitude of the search
vector. It adjusts the initial step sizes along this vector inversely to the magnitude of the vector. As it steps
along this vector, new valies of f(x) are calculated. When a change of direction from decreasing to increasing
values of f(x) along the search direction is detected (extremum is bracketed), a quadratic curve fit of the
last three points is made in order to estimate the location of the extremum. Figure C-1 shows the curve fit

made through y(&) = f(xi + oziHin) point for successive o’s. This method estimates a* for the minimum

point of a quadratic curve fit where f(xi+1) = rnin[f(xi + ociHin(xi)]. This approximation of the actual
extremum gets better near convergence. In the case where the change of direction in the values of f(x)
occurs on the first step along the search vector, the quadratic curve fit is made based on the original starting

41



yla)

v(afq)

v(a®*3)
vl

i+1

o(Q dQH o* o(Q+2

Figure C-1. Extremum estimation along search vector.

point of the search vector, the gradient at that point, and the first step point. SUBROUTINE SEEK takes
ten steps along the search vector. If the values of f(x) have not changed direction, then an error flag is
returned to the MAIN PROGRAM. If the problem is of such a complexity that a reasonable estimate cannot
be made, then SUBROUTINE FIB is called to supply this point. SUBROUTINE CHK is always called to
determine if the point found is in feasible space. If it is not, then CHK returns a new search vector. A return
is made to MAIN if a constrained extremum was determined.

SUBROUTINE FIB

This subroutine performs an eight-step Fibonacci Search along the vector supplied by SEEK. The
new point which is returned is an approximation of the extremum point along the search vector. An eight-
step Fibonacci search should be sufficient to provide the proper point within a small error. This type of
search method is used since the number of steps have been specified in order to obtain the minimum interval
of uncertainty for the placement of eight points.

SUBROUTINE CHK

This subroutine tests for constraint violations. If no violations have occurred, it returns the same
search vector to SEEK. When new constraints are violated by a search point, CHK selects those that are
violated. These are added to the projection matrix. If the number of these constraints equals or exceeds the
number of dimensions, then SUBROUTINE DROP is called to determine which constraints are to be
dropped. SUBROUTINE CHK determines when a constrained extremum has been encountered. When either
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(1) the projected search vector magnitude becomes smaller than a user set tolerance or (2) the search vector
points away from any equality constraint, a constrained extremum is assumed to have been found. When
SUBROUTINE DROP returns a new search vector and a new point, SUBROUTINE CHK determines when
all new constraints have been acquired and then searches these to see if all of the equality constraints are
contained in the projection matrix. If they are not, then the original point sent to DROP is assumed to be
the constrained extremum. If the same constraints are acquired again, then this point is assumed to be con-
strained extremum. The projection matrix is returned from SUBROUTINE SPAN. It uses the set of con-
straints supplied by CHK.

SUBROUTINE SPAN

This subroutine uses an algorithm that is based on the Gram-Schmidt method to calculate the pro-
jection matrix. Any number of new constraints may be added without reinitializing the matrix. When con-
straints are dropped, all elements in the projection matrix are set to zero and it is recalculated.

SUBROUTINE DROP

In this subroutine the search vector is tested to determine if it points into or out of feasible space.
If it points into feasible space, then only the equality constraints are kept to calculate the new projection
matrix. If there are no equality constraints, then a flag is set which will cause the program to return to
MAIN and initiate the DFP Search method from this point. If the search vector points out of feasible space,
then DROP calculates a new starting point at a very small distance from the constraints and sets the search
vector equal to the gradient direction. A return is made to CHK to continue the search.

SUBROUTINE FEASPT

This subroutine generates an initial feasible point using Phase I of the two-phase Simplex method.
The Phase I method finds a point that lies on the boundary of feasible space which satisfies all of the
equality constraints. This point is transferred to the MAIN Program. If Subroutine FEASPT fails to find a
feasible point or if more equality constraints are present than the number of variables, a message is printed
indicating the type of difficulty encountered, and an error flag is set that terminates the program. When too
many equality constraints are present, it indicates that the system has linear dependency, redundancy, or
is an inconsistent set.
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C KK X X3 36 K% 3K 5 K KK KK KK R K T KA KKK KKK KK I KK KA KNS K KK KKK KKK KK

OO aQaGOoOoaaaaQacaaaaaaa

Ty CONVENTION WILL 88 THAT THE NORMALS TO wdb
CONSTRAINT PLANES WILL BE NEGATIVE FOR THOSE TdJAY
POIWY INTO TdE FEASIBLL SPACZ AND POSITIVE FOR THOSZ
THAT POINT IdT0 INFEASIBLE 3PACH.

KEKEEEXEKEE XXX KKK EELLEEELEX LXK ER XXX KKK LKL RXH KKK A XX XFK KKK ER

Tds CONSTRAINTS WILL BE ORDERED IN Idt PROGRAM Id
THE FOLLOWING WAY:

NO. 0F AX<B CO:STRAINTS = :dLZ
0. OF AX=B CONSTRAINITS = NxC
40+ 0F AX>B COUJSTRAINTS = HGEC

T X>0 CONSTRAINTS WILL NOT BE IN NGEC
0. OF X>0 CONSTRAINTS = JAGEX

KEXKXKEREEKEEEXEEEAX L LKA KKK LL LA IR KL R TR TR T A EKEER KKK TR,

m H0. OF DIMENSIOHS

Ad MAX. 0o OF ITERATIONS

EP1 SYX(H+1)=-X(W)2dIS IS FOR CONVERGENCHE CRIPERIA. ®P1=.0001 GENSRALLY

£P2 >HGRAD(N)[ T4IS IS A COJVERGENCE CRITERIA. EP2=.0001 GEJERALLY

Y = 0BJ. FUJICT. VALUE

YL = LAST OBJ. FUNCT. VALUE

GR1 = GRAD.

GRO = LAST GRAD.

FLAGT = 1 SPECIFIES TdAAT 2de 'i' MATRIX 4AS BEad UPDATED N1 TIMES
AND IS COMPLETE. I? WILL BE U3ED ONE MORE TIME.

O SPECIFIn3 THAT Tug 'd' MATRIX IS NOT YET COJMPLETSH

Won

PLAGZ2 = 1 USED IN SEZK TO ALBRT IT 9dAT A COWSTRAINT :HAS BEEN
VIOLATED AND DOE3 A LIWE SEARCA Id PLANE VIOLATSED.
= 2 CAUBES SEgK T0 SET FPLAGSY = 1
PLAG3 = 1 SPACIPIZS TAAT THE COADITIONS FOR A COASTRAINED
MAX(MIN) dAS BEBN M7,
= 2 THg MAX. NO. OF YRIES AT FINDING Ay BEXTREMA ALONG
THE SEARCH VECTOR HAS BEZN DONE.
FLAG4 = ALERTS PROGRAM TdAT IT WAS I A CONSTRAIWNT BUT IS
WOW IN FEASIBLE SPACE. RESETS H=I,B%C=0 AND AAT2=0
FLAGS = ALERTS PROGRAM TJAT THARE IS LINEAR DEPEJDINCE AMUNG



PHE EQUALITY CONSTRAINTS.
KK = THIS IS A COUJT OF THE TOTAL #0. OF ITEZRATIONS THROUGH THE
HESSIAN. IT IS USED TO FORCE THe PROG. THROUGH AT LBAST
N1 UPDATES OF 'H'. USED 70 ABORT PROG. IF ERROR BOU#DS
CAN'? BE MET BY SPaCIFIED 40. OF ITERATIONS.
K = RESETS d = I AFTER N1 ITHERATIONS.
HC = 0. OF COHSTRAINTS INCLUDING THE Xi>0 CONSTRAINTS
NUM = TdE VARIABLE THA?T DESIGHATES BITHER MAX OR MIWN.
IT DOLS TdHIS BY I?'S SIGW (+/ IS MAX, -/ IS MIN)
COMMON X0(10),X1(10),H(10,10),A(20,10),GR0(10),BC(20),
141,8C,AAT2(10,10),KOF,NCV0O(20),HNLEC, HEC,NGEC, NGEX,KC
DIMENSION GR1(10),XD(10),GRD(10),P(10),
1B(10,10),B1(10),C(10,10),Cd(10),Cdt(10,10)
INTEGER FLAG1,FLAG2,PLAG3,FLAG4,FLAGS,HNC,TYPE,QMIN, QMAX
DATA QMAX,QMIN/4diAX ,4uMIN /
C***%%x KOF=0 MAEANS THAT TdE SEARCL 1MUST START IN FEASIBLE SPACE.
C INITIALIZE
PLAG5=0
KOP=0
KK=0
KC=0
K=0
NUM=1
READ(5,300)TYPE, N1, 8N, C, BP1, EP2, NLEC, NEC, NGEC, HGEX
WRITE(6,%20)2YPE, N1, 8N, NC, £P1,EP2, NLEC, lsC, NGEC
320 FURMAT('W£ ARE LOOKING FOR A ',A3/
1'N0. OF DIMENSIONS =',I3%/'MAX. #0. OF ITERATIONS =',6I3%/
2'§0. OF CONSTRAINWS =',I3/'EP1 & P2 =',2E1%.6/
31'§0. OF LE CONSPRAINTS=',I3/'NO.OF = CONSTRAINTS=',I3/
4'§0. OF GE CONSYTRAINTS=',I3)
READ(5,%01)(X0(IL),I=1,541)
WRITE(6,321 )51, (XO(I),L=1,81)
321 PORMAT('X0(I),I=1,H1'/HE1%.6)
IF(HC.EQ.0)GO TO 33
DO 34 I=1,iC

Qoo

LY
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34 READ(5,301)BC(T)

DO 1 T=1,NC
1 READ(5,301)A(T,d),J=1,N1
WRTTE(6,322)
322 FORMAT('THTS IS THE "A" MATRTX')
NO =NC ~NGEX

WRITE(6,318)(N1,(A(T,d),J=1,N1),T=1,NO)
318 FORMAT(NE13.6)
WRTTE(6,400)N0, (BC(T),T=1,N0)
400 FORMAT('BC= ' ,NE13.6)
C#%%%% TF THERE ARE EQUALITY CONSTRAINTS THEN THE PHASE 1 METHOD
C WILL BE USED AS THTIS WILL PUT THE INTTTAL POTNT ON THE
o EQUALTTY CONSTRAINTS AS REQUIRED.
TF(NEC.NE.DJ)GO TO 32
DO 29 I=1,NC
BC1=0.0
DO 28 J=1,N1
28 BC1=A(T,J)*X0(J)+3C1
TF(T.GT.NLEC)GO TO 40
IF((BC(I)~BC1).LT.0.0)GO TQ 32
GO TO 29
40 TF(T.GT.(NLEC+NEC))GO TO 41
IF(ABS(BC(I)-~BC1).GT.1.E~12)G0 TO 32
GO TO 29
41 TF((BC(I)~BC1).GT.0.0)GO TO 32
29 CONTINUE
GO TO 33
32 CONTINUE
Ck#%%*¥ THTS ROUTINE IS THE STMPLEX PHASE 1 METHOD. IT PTVOTS
C THROUGH THE VERTICIES UNTTIL IT LOCATES ONE TN FEASTBLE SPACE.
CALL FEASPT(FLAGS)
IF(FLAG5.EQ.1)GO TO 36
Ck*%%% TT IS ASSUMED THAT THE CONSTRATNTS ARE LTNEARLY TINDEPENDENT.
TF(N1.GT.NEC)GO TO 33
DO 35 T=1,N1
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35 X1(I)=X0(I)
GO TO 23
33 CONTINUE
TF(QMAX.EQ.TYPE )NUM=1
IF(QMIN.EQ.TYPE )NUM=-1
323 FORMAT('THE DATA HAS BEEN READ')
C#¥x%%X0 = INJTIAL POINT
Ckx#%%%Y - VALUE OF THE OBJ. FUNCT.
Ck*#x%%N1 = NO, OF DTMENSTONS
C#*#*%4%NC = NO, OF CONSTRAINTS
CALL FUNCT(X0,Y,N1)
210 CONTINUE
FLAG3=0
YL=Y
350 FORMAT(*X0(I),Y'/NE14,7)
C GRAD. OF THE FUNCT. AT THE POTINT X0
CALL GRAD(XO0,GRO,N1,NUM)
351 FORMAT('GRO(I)' /NE14.7)
100 CONTINUE
C*¥*%¥%THIS SETS THE HESSTAN = T
DO 3 I=1,N1
DO 2 J=1,N1
AAT2(T,J)=0.0
H(T,d)=0.0
2 TF(I.EQ.J)H(I,d)=1.0
NCVO(T)=0
3 CONTINUE
FLAG1=0
FLAGY =0
K=0
YL=Y
309 CONTINUE
o
C***#¥%THTS IS THE LTNE SEARCH MAX(MTIN)f(X1+6HGRAD)
C
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CALL SEEK(Y,YL,FLAG1,FLAG3,FLAGY,NUM,RHO,P)
g***** TF FLAG3=2 THE MAX NO. OF ATTEMPTS HAS BEEN DONE ALONG
Ckx#%% THE SEARCH VECTOR.
¢ TF(FLAG3.EQ.2)GO TO 27
g***** TF FLAG3=1 A CONSTRAINED MAX(MIN) HAS BEEN FOUND
‘ IF(FLAG3.EQ.1)GO TO 23
E***** IF FLAGUY=1 THE GRAD NOW POINTS BACK TINTO FEASTIBLE SPACE

IF(FLAG4.EQ. 1)GD TO 200
C
Ck*%%% TF FLAG1=1 A LINE SEARCH WITH THE COMPLETE HESS HAS BEEN
C COMPLETED AND NOW RESET HESS=T
C
IF(FLAG1.EQ.1)GO TQO 22

CALL GRAD{X1,GR1,N1,NUM)
WRITE(6,314)
314 FORMAT(5X,'X1',12X,'X0',12X,'GR1"',12X,'GRO")
WRTITE(6,315) (X1(T),%X0(T),GR1(T),GRO(T)),T=1,N1
315 FORMAT(4E14,T)
DO 4 I=1,N1
XD(T)=X1(T)<X0(I)
4 GRD(T)=(GR1(T)~GRO(T))*NUM
B2=0.0
€2=0.0
DO 20 I=1,N1
B2=B2+XD(T)#%2
20 C2=C2+GRD(T)#*%*2
B2=SQRT(B2)
C2=SQRT(C2)
GO TQ 22
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200 CONTINUE
IF(FLAG1.EQ.1)GO TO 19
Cx*%x%¥RESETS THE B&C MATRICES = 0
KOF =0
DO 16
NCVO(T

I=1,N1
)
CH(I)=0.
J

DO 15 J=1,
AAT2(I,Jd)=
B(1,J)=0.0
C(I,J) 0.0
CONTINUE
IF(FLAGY.EQ. 1)GO TO 100
B3=0.0
DO 5 I=1,N1
5 B3=B3+P(I)*GRD(T)
B3=ABS(RHO)/B3
C 306 FORMAT('B3=',E14.7)
DO 6 I=1,N1
DO 6 J=I,N1
B(T,J)=P(T)*P(J)*B3
6 B(J,T)=B(I,J)
DO 7 I=1’N1
CH(I)=

N1

1
0
0
1
)=0.0

-t
o on

o
Q
Q
n oo
Ouo

N1
( )+H (T, J)%GRD(J)

DO 8 T=1,N1

8 CHD=CHD+GRD (I)#*CH(I)
DO 9 I=1,N1
DO 9 J=1,N1

9 CHN(T,J)=CH(T)*GRD(J)
DO 11 T=1,N1
DO 11 J=1,N1
c(1,J)=0.
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DO 10 Ji=1,N1
10 C(I,Jd)=C(L.J)+CHN(I,d1)*1(J1,d)
11 ¢(1.d)=C(I.J)/CHD
DO 12 I=1,uf
DO 12 J=1,N1
2 'd(I,J):ﬂ(I,J)+B(I,J)-C(I,J)
9 CONTINUE
KK=KK+1
K=K+1
DO 21 I=1,H1
XO(T)=x1(1)
21 GRO(I)=GR1(I)
Y L=Y
GO0 TO 309
250 CONTINUH
DO 251 I=1,it
X0(L)=X1(I)
251 CONTINUE
GO 10 210
22 CONTINUE
C
Cx***%[[UST GO THROUGH AT LEAST N1 CALC'S OF 'H' FIRST TIME
c
IF(KK.LT.N1)GO 70 24
C
Cx*#**#PH[S CHECK I[S 70 DETERMINE IF YOU'RE CLOSE ENOUGH
C
IF(B2.LT.EP1.AND.C2.LT.EP2)G0 TO 23
24 CONPINUE
I8(FLAGT.EQ.1)G0 20100
I#(K.EQ.N1)PLAGY =1

C
Cr*x*%%xTR KK=MAX NHO. OF ITERATIONS THEN 3TOP
C

IR(KK.BQ.HN)GO TO 23
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C

Cx**%#THIS ALLOWS ONE STEP WTTH THE COMPLETED 'H' MATRIX

C

GO TO 200
23 CONTINUE
TF(FLAG3.EQ.0)GO TO 27
WRITE(6,305)TYPE
305 FORMAT('A CONSTRAINED ',A3,' HAS BEEN FOUND.')
27 CONTINUE
TF(FLAG3.EQ.0)GO TO 37
TF(FLAG3.NE.2)GO TO 13
WRITE (6, 324)
324 FORMAT('THE LINE SEARCH HAS TAKEN THE MAX. NO. OF STEPS')
CALL GRAD(X1,GR1,N1,NUM)
GO TO 37
13 CONTINUE
DO 38 T=1,N1
X1(T)=X0(T)
38 GR1(I)=GRO(T)
37 CONTINUE
WRTTE(6, 303 )XK, KC
303 FORMAT('NO. OF UNCONSTRATNED ITERATTONS=',T4//
¥'§0, OF CONSTRATINED TTERATTONS=',T4)
WRITE(6,304)Y,N1,(X1(I),T=1,N1),N1,(GR1(T),T=1,N1)
304 FORMAT('F(X*)=',E14,7// 'X*=* NE13.6//
* GRADIENT F(X*¥)=z',NE13.6)
300 FORMAT(A3,3T3,2E14,7,4T3)
301 FORMAT(10E13.6)
36 CONTINUE
END
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SUBROUTINE FUNCT(A,B,N)

DIMENSION A(N)
B=100.%(A(2)~A(1)*%2)%%24(1,-A(1))*¥24
¥100.%(A(3)-A(2) %52 ) %224 (1, -A(2)) #%2
RETURN

END

SUBROUTINE GRAD(A,B,N,NU4)

DIMENSTON A(N),B(N)
B{(1)=-U0,*(A(2)-A(1)*%#2)*A(1)-2.%(1.-A(1))
B(2)=20.%(A(2)~A(1)%%2)«2.%(1,-A(2))-U0.*(A(3)-A(2)**2)*A(2)
B(3)=20.*(A(3)-A(2)*%2)

TF(NUM.GT.0 )RETURN

DO 1 I=1,N

B(I)=NUM*B(I)

RETURN

END
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OO0 OO0 0000 OO0 OO0

SUBROUTINE SEEK(Y,YL,FLAG1,FLAG3,FLAGY4,HNUM,RHOM,DD)

B = B MATRIX OF CONSTRATNTS(A'X=B)

NC = NO. CF CONSTRAINTS

A = MATRIX OF THE CONSTRAINTS COEFFICTENTS

FLAG1 1 ALERTS MAIN PROG. THAT THERE IS A NUMERICAL
PROBLEM AND TO RESET H=T

FLAG2 = 1 ALERTS SEEK THAT CHK TS RETURNING & NEW
SEARCH VECTOR, IT IS RESET IN CHK WHEN NO
NEW CONSTRAINTS ARE VIOLATED OR THE SEARCH
VECTOR  POTNTS INTO FEAS. SPACE WITH NO
EQUALITY CONSTRAINTS PRESENT,

f
N

FLAGZ CAUSES FLAGU4=1 AND RETURNS TO THE MATN PROG.

TO DO THE DFP METHOD,

FLAG3 = 1 ALERTS PROG. THAT A BOUND EXTREMA IS LOCATED.

It
[AS]

ALERTS PROG. THAT TH&E LTNE SEARCH CANNOT FIND
BETTER VALUE THAN THE LAST ONE. (MAX. STEPS)
FLAGY = 1 ALERTS MAIN PROG. TO INITIATE THE DFP METHOD.

FLAG3

FOR SUBROUTINE CHKX.
FLAGT = 0 ALERTS CHK THAT THREE STEPS ALONG THE LINE
SEARCH WERE MADE( MAX NO.) WITHOUT FINDING AW

FLAGT7 = 1 ALERTS CHX THAT AN EXTREMA WAS LOCATED ALONG
THE SEARCH VECTOR.

"
—

SET WHEN GOING FROM TWO POINT FIT TO & THREE
POTNT METHOD., SET = 0 OTHERWISE,

FLAGSE

COMMON X0(10),X1(10),H(10,10),A(20,10),GR0(10),BC(20),
1N1,NC,AAT2(10,10),KO0F,NCVO(20),NLEC, NEC,NGEC,NGEX,KC

EXTREMA.
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DIUEN3ION DD(10)
INTLGER FLAGY, PLAG2, FLAGS, PLAG4, PLAGS, PLAGT, FLAGS
DATA UL1,MTUL?/1O.,1.4—5/
10=0
IcuT=0
IrLAU2 =0
?LAGE=0
FLAGT=0
DO 205 I=1,il1
205 DL(I)=0.0

C
CH***¥DD=i*GRAD IS Tul SHMARCH ViCTUR.
C
DO 150 I=1,1
DO 149 J=1,51
149 D(I)=d(I,J)*GRO(J)+DD(L)
150 CON'YL[NUZ
151 COJdTLNUB
FLAGS=0
WRITE(6,307)N1, (DD(I),I=1,.41)
307 PURMAT(4X, ' 3EARCH VECTOR AT SEARCH' /iE1%.6)
C
C***#% DEQECTION OF Tui CONDITION POR AN UNBOUNDED SOLUTIOA WILL B
c DO, IF DHESY CONDITION ARE MET Taud A MBSSAGH 4ILL BE PASSED ALONG BUT
c 18 PROG. WILL WOL BE S10PPaD( COULD STILL PIND AN EXTREMZ VALUZ).
C ALL CONSTRAINTS Id WiAICH THE DOT PRODUCT OF Tild SEARCH VECTOR
c

AdD NORMAL 90 TuB CONSTRAINT PLANE ARX >/=0 ARZ NOT BINDIHG.
IDR=-1

DO 12 I=1,HC

I#(I.0T.NLEC)IDR=1

UNBiD=0.0

DO 12 J=1,.i1

UNBND=U43idD+DD(J )*IDR*A(I,d)

C

CH*xx* ALY LZASY OdE CONSYRAINT WITH A WEG. DOP PRODUCT DENVTES A BINDIJG
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C CONSTRATINT HAS BEEN FOUND.

TF(UNBND.LT.0.0)GO TO 13
TF(I.NE.NC)GO TO 12
WRITE(6,310)
310 FORMAT('CONDITIONS FOR AN UNBOUNDED SOLUTION HAS BEEN DETECTED')
GO TO 13
12 CONTINUE
13 CONTINUE
pMP=0.0
DM=0.0
C
C#*#%%DMP TS USED TO SET THE SENSITIVITY OF THE LINE SEARCH TO THE
o MAGNTITUDE OF THE HGRAD.
o
DO 3 T=1,N1
3 DMP=DMP+DD(T)*DD(I)
DMP=SQRT(DMP)
PT=DMP
DO 18 T=1,N1
18 DM=DM+NUM¥*GRO(T)*DD(T)/DMP
C
C*#x*%xx DM = THE GRAD., OF A FUNCT OF RHO. (X0+RHO*HGRAD)
C
IF(DMP.GT, 10000. )RHO=.001
IF(DMP.GE.200,.AND,DMP,LE. 10000, )RH40=10./DMP
IF(DMP.GT.5..AND.DMP.LT.200)RHO=.1
IF(DMP.LE.5)RHO=1.
WRITE(6,300)
300 FORMAT('THIS IS H(I,J) IN LINE SEARCH')
WRITE(6,303)(N1,(H(T,J),J=1,N1),T=1,N1)
303 FORMAT(NE13.6)

C :
C*##x*Tp THE HESS IS BADLY CONDITTONED OR HAS EXCESSIVE ROUNDOFF ERROR
C THE SEARCH VECTOR MAY HAVE THE WRONG STGHN.
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C HENCE DD*GRAD=+ ALWAYS UNLESS SOMETHING TS WRONG.
Cx%*%%¥ THIS TEST ON THE CONDITION OF SEARCHING IN THE CONSTRATINT MANTFOLD.
C
IF(FLAG2.EQ. 1)GO TO 10
TF(DM*NUM,LT.0.0)GOTO 7
C
Ci*%x%% STEP DOWN THE SEARCH VECTOR FOR AT LEAST THREE STEPS
C THE LATER TNTERPOLATTON USES THREE POINTS
C
10 CONTINUE
LL=0
RHO1=RHO
RHQO0=0.0
RH0O00=0.0
YO=YL
YOO =YL
110 CONTINUE
DO 120 T=1,N1
120 X1(I)=X0(I)+DD (1) *RHO
CALL FUNCT(X1,Y1,N1)
C
C##*##*THE NEXT IF HAS (Y1.GE.YO) WHEN MIN, AND (Y1,LE.YO) FOR MAX.
C
TF(NUM.LT.O0..AND.Y1.GE.YO)GO TO 2
IF(NUM.GT.Q..AND.Y1,LE,YO)GO TO 2
IF(LL.EQ.0)GO TO 1
YO0 =Y0
RHOQO=RHOO
1 YO=Y1
RHOO=RHO
LL=LL+1
C

Ck*%#%x7F MAX(MIN) HASN'T BEEN DETECTED YET THEN CALC. A PT, ANYWAY,
C

TF(LL.EQ.3.AND.FLAG2.EQ. 1)GO TO 8
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TF(LL.LE.10)G0 TO 22
FLAG3=2
Y=Y1
GO TO 8§
22 CONTINUE
RYO=RHO1%¥2, *%L|,
RHOM=RHO
GO TO 110
C
C*%%#%¥THTS CATCHES THE CASE WERE THE FTRST PT. STRADDLES TEE EXTREMA.
C _
2 IF(LL.EQ.0)GO TO 6
C
C
C¥x%%% THE ABOVE CATCHES CASE TWO (v'(d1),v(d1),v(d2),d1,d2 ARE KNOWN)
Cék*x¥% CASE ONE TS WHERE y(d1),vy{(d2),v(d3),d1,d2,d3 ARE KNOWN,
C
C
19 CONTTNUE
XX=(RHOO~RHO00)*(Y1~Y00 )~ (RHO~RHOCO)*(Y0~YOO0)
RHOM=RHOOO+.5% ( ( (RHOO~RHOOQ ) #%2% (Y 1+YD0 )~ (RHO-RHO0D ) %2 %
X(YO-Y00))/XX)
IF(ABS(XX).LT..0000000001)RHOM=.000001
4 CONTINUE
DO 5 T=1,N1
5 X1(I)=X0(T)+DD(I)*ABS(RHOM)
WRITE(6,308)
308 FORMAT(4X,'X1(I)',9X,'X0(T)",9%,'DD(T)")
WRITE(6,306)(X1(1),X0(T),DD(T)),T=1,N1
306 FORMAT(3E13.6)
CALL FUNCT(X1,Y,N1)
C
C#%%%% FLAGT7=1 ALERTS CHK THAT AN EXTREMA ON THE LINE SEARCH
C WAS FOUND
C
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C

-PLAGT=1
IF(NUM.LT.O.AND.Y.LE.Y0)GO TO 8
IF(NUM.GT.0.AND.Y.GE.Y0)G0 20 8

Cx*%xx% GIVE IT TEN TRIES AND THEN CHuCK TO SEE IF ITS CLOSE ENOUGH.

C

14

20

17

15
16

312

ICNT=ICNT+1

IF(ICNT.GT.10)30 10 15
IF(FPLAG8.EQ.1)G0 TO 17
IF(LL.NE.O)GO TO 14

RHOO=RHOM

YO=Y

FLAGS=1

30 T0 19
IF(ABS(RHOM).GT.RHOO)GO TO 20
RHOOO=RHOM

YOO=Y

GO 0 19

CONTINUE

RHO=RHOM

Y1=Y

GO TO 19

Ri0=RHO0

Y1=Y0

RHOO=RHOM

YO=Y

G0 TO 19

CONTINUZ
IF(ABS(ABS(Y)-ABS(Y0)).LT.1.E-5*%ARS(Y0))G0O TO 8
CONTINUE

PLAG3=2

WRITE(6,312)

FORMAT( 'SEARCH FAILED TO FIND A BETTER VALUE THAN X0')
CALL GRAD(XO,GRO,N1,:dUM)

GO T0 9
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o
C*##x% THTS TS THE FTNAL ADJUSTMENT OF THE SEARCH STEP STZE
C
6 TF(ABS(Y1).LT.(100,%ABS(Y0)))30 TO 21
RHO=.1*RHO
GO TO 10
21 CONTINUER
RHOM=,5%RHO**2 %DM/ (RHO*DM+Y0~Y 1)
IF(ABS(RHO*DM+Y0-Y1).LT..0000000001)RHOM=., 000001

C
C##%#%%#% T THE GRAD OR PROJECTTON ARE LARGE AND THE SEARCH STEP SIZE IS
C SMALL THEN MORE ACCURACY IS CALLED #OR THAN THE QUADRATIC FIT
C CAN GTVE SO SUBROUTINE #TB TS CALLED.
C
IF(PT.GT.ETOL1, AND.RHOM,LT.ETOL2)CALL FTB(RHO,RHOM,NUM,X0,N1,DD)
GO TO 4
7 FLAG1=1
& CONTINUE
IF{NC.EQ.0)GO TO 9
C
C%%%% THIS ROUTINE CHECKS TO SEE IF ANY CONSTRAINTS ARE VIOLATED
C AND TF SO TIT RETURNS WITH A NEW SEARCH VECTOR
C
CALL CHK(PT,DD,FLAG2,FLAG3,FLAG6,NUM,FLAGT,T0)
C
Cé#&%k%x FLAG3=1 A CONSTRAINED MAX(MIN) HAS BEEN FOQOUND
c
IF(FLAG3.EQ. 1)GO TO 9
c
Ck##%% FLAG2=1 CONSTRAINT(S) HAVE BEEN VIOLATED AND CHK HAS
c SUPPLIED A NEW SEARCH VECTOR.
C
FLAGT=0
TF(FLAG2.NE. 1)GO TO 11

CALL FUNCT(XO0,YL,N1)
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ICNT=0

GO TO 151
11 IF(FLAG2.EQ.2)FLAGU=1
9 CONTINUE

RETURN

END
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C

SUBROUTINE FIB(RHO,RHOM,NUM,X0,N1,DD)

C*###%x# THIS IS AN 8 STEP FIBONACCT SEARCH

C

DIMENSTON XO(N1),X1(10),XT1(10),DD(N1)
DATA ETOL/1.E~5/

REAL L2

ISTEP =1

RANU=RHO

RANL=0.
L2=(RHO*13,+(ETOL*(~1)%%3))/21,

X2 =zRHO-L2

CONTINUE

TF(ISTEP.EQ.8)G0 TO 13

ISTEP=ISTEP +1

DO 2 I=1,N1

XT1(I)=X0(T)+DD(I)*L?2
X1(T)=X0(T)+DD(I)*X2

CALL FUNCT(XT1,Y1,N1)

CALL FUNCT(X1,Y2,N1)
TF(Y1.LT.Y2.AND.X2.GT.((RANU~RANL)/2.+RANL))GO TO 10
TF(Y1.LT.Y2.AND.X2.LT.{ (RANU~RANL)/2.+RANL))GO TO 7
IF(Y1.GT.Y2.AND.X2.GT.((RANU~RANL)/2.+RANL))GO TO 6
IF(NUM.GT.0)GO TO 12

RANU=L?

CONTINUE
TF(X2.GT.({(RANU-RANL)/2.+RANL))GO TO 5
L2=(RANU~X2)+RANL

GO TO 1

L2=RANU~(X2~RANL)

GO TO 1

CONTINUE

IF(NUM.GT.0)GO TO 11

RANL=L2

GO TO 4
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10
1M

13

CONTINUE

TE(NUM.GT.0)GO TO 3

RANL =X2

CONTTINUE

TF(L2.GT,. ((RANU~RANL)/2.+RANL))GO TO 9
X2=(RANU~L2 )+RANL

GO TO 1
X2=RANU~(L2~RANL)

GC TO 1

CONTTNUR

TF(NUM.GT.0)GO TO 14
RANU=X2

GO TO 8

CONTINUE
RHOM=a(RANU~RANL) /2. +RANL
RETURN

END
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SUBROUTINE CHK(PY,P,FLAG2,FLAG3, FLAGE,HU.L, FUAGT, IU)
CA**x*%xCV - THE WUMBER OF TdE VIOLATED CONSTRAIWT

C NCS - THE NUMBER OF Td& VIOLATED CONSTRAIATS (WCV(I))
C PHAT dAVE THi LOWEST ALPHA. THIS IS US®D 70O
C INDEX NCV.

CHrR#E% TX:
ACV(NCS(2)) - IS THE SECOSD OF dE JBEWLY VIOLATED
CONSTRAIWTS TdAT dAVe ALPAA'S EQUAL TO THE LOWEST
ALP:AA (MIWIMUM SET VIOLATED).

FLAG2 = O ALERTS CHK THAT ©db PREVIOUS CYCLE DIDW'T
VIOLATE A CUNSTRAINT.

Qo aaoaaaaoaQaaaeaaQaoaaaaa

COMMON X0(10),X1(10),4(10, 10), A(20,10),GRO(10),BC(20),
1N1,NC,AAT2(10,10),KOF,JCVO o),qunc WEC, HGEC, NGEX, KC
DIMENSION B(20),HCV(20), SAX(ZO) SAnD(ZO) ALPHA(20),

1HCS(20),%Xw5(10),P(10), uRN( ),HGRO(ZO) NLUC(20)
2MdB(20),NCV1(20), GRT( 0),Xr(10)
IJTEGER FLAGY,PLAG2, FuAGS PLAZ4, PLAGE, PLAGT
REAL IDBHT
DATA ETOL/1.E-5/
WRITE(6, 313)
313 mURAAT(' Hi X1 POINT!')

FLAGZ2 = 1 ALERTS CHUX TJAT CONSYRAINYS HAVE ALREADY BEEN VIOLATED.
FLAGY = 1 ALXRTS PROG. TdAAT A BOUHD £XTREMA HAS BesN FOUAND.
FLAG6 > O ALERTS CHK THAT DRUP nAS GENERATED A WNEW POIN®.
FLAG6 = 2 ALERTS CHK 70 LOOK FOR THE FURTiZREST CONSTRAINT
FROM POINT RETURW{ED BY DROP AB IT IS I
INFEASIBLE SPACE (SEARCH VECTUR POILJD3 Id).
PLAGT7 = 1 ALERTS CuK TdAT AN EXTREZMA WAS FOUSD ON LINE SzARCH.
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WRITE (6, 31 ) y (X1(T),T=1,N1)
314 FORMAT(NE13.

KF=0

1
6)

B(I):O
HGRO(1)=0.0
14 CONTINUE
C
C*%##% THIS CALCULATES THE ACTUAL VALUES OF THE CONSTRAINT EQ.'S
C

DO 1 I=1,NC

DO 1 J=1,N1
B(T)=A(T,J)*X1(J)+B(T)
IF(T.GT.N1)GO TO 1
TF(FLAG2.EQ. 1)GO TO 1

C
C*#*%*QNLY NEED HGRO WHEN GOING FROM FEASTIBLE SPACE TO CONSTRAINT.
C
HGRO(T )=H(T,J)*GRO(J)+HGRO(T)

1 CONTINUE
CHEREER IR AR R AR AR RN R R RN R R AR R R AN KRR RR RN R RN R AR R AR RN AR R R AR IR SR
CREMR KK ERE IR R AKX R AR K IR AN R AR AR AR RN AR AR AR KRN R RN AR RN KRR RN KRR R XX
SORT THE CONSTRAINTS FOR THOSE THAT ARE VIOLATED.
KA =NO. OF NEWLY VIOLATED CONSTRATINTS

KO = " " QLD CONSTRATNTS STILL VIOLATED

KOF = ® v W CONSTRATNT VIOLATIONS

NCVO(I)= " " THE OLD VIOLATED CONSTRAINT

NCVI(T)= » n n " " " STILL VIOLATED

QOO0

NCV(T) = " ® v NEWLY VIOLATED CONSTRAINT
C****ﬁ*****************************i**************************

CREARREEAE R KR AR R A A R RN R AR R RN R KRR R R RS R R R R RN A AR N R AR R R ARRRE R
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KA=0
K0 =0
DO 2 T=1,NC
BF=BC(I)~B(I)
c
C%%%%¥ THIS IS HERE TO ALLEVIATE NUMERICAL DIFFICULTIES
C
IF(ABS(BF).LT.ETOL.AND.FLAG2.EQ.1)GO TO 51
IF(FLAG6.NE.2)GO TO 62
il i e e R R R R A AR AL ALt i L
CHEREER AR R AR AR KRR AR R RN R AR AR AN AR AR AR R RARR R AR A AR AR RN RR R AR RN

C THE FOLLOWING SECTION TS HERE TO CHEK FOR A NEW CONSTRAINT
C BETNG ENCOUNTERED WHEN THE SEARCH VECTOR POTINTS INTO

C FEASIBLE SPACE AFTER THE PROGRAM HAS STEPPED TNTO

C INFEASIBLE SPACE.

CRu b d AR AR R R R AR R R K AR R AR AR AN R AN TR AR R R R RN AR AR AR NN R AN H AR
IF(BF.LT.0..AND.T.LE,NLEC)GO TO 2
IF(BF.GT.0..AND.I.GT.NLEC+NEC)GO TO 2
DO 64 IT=1,KOFO
WRITE(6,328)I,NTOC(IT)

328 FORMAT('I=',T13,' NTOC=',I3)
64 IF(I.EQ.NTOC(II))GO TO 46
GO TO 2
62 CONTINUE
JF(BF.GE.0.0.AND.I.LE,NLEC)GO TO 2
IF(BF.LE.0.0.AND,T.GT.(NLEC+NEC))GO TO 2
51 CONTINUE
IF(KOF.EQ.0)GO TO 46
DO 45 X=1,KOF
45 TF(NCVO(K).EQ.T)GO TO 50
46 CONTINUE
KA=KA+1
NCV(KA)=T
GO TO 2
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50 KO=KO+1
NCV1(K0)=T
2 CONTTNUE
C
Ck#%%% THIS TESTS TO SEE TF ANY NSW CONSTRATNTS WERE VIOLATED
C AFTER THE BRANCH TT TESTS TO SEF TF TT WAS ALREADY
C TN A CONSTRATNT PLANE(SEE COMMENT BELOW).
C

TF(KA.EQ.0)Ge TO 13
WRITE(6,300)KA, (NCV(T),T=1,KA)

300 FORMAT(I3,' CONSTRAINTS HAVE BEEN VIOLATED. THEY ARE',20T.4)
C*****ﬁ*********************i%*********k*******************%*****
C*************x************************i*****************i****i**
C##%%% FLAGY TS SET WHEN THE NEXT X0 BETNG LOOKED FOR TS DOWN A

C SEARCH VECTOR ALREADY IN A PLANE THAT HAS VIOLATED AT

C LEAST ONE OTHER PLANE,

C¥%%%% FROM HERE TO STATEMENT 4 A STMULTANEOUS SOLUTTON OF

C THE SEARCH VECTOR AND THE CONSTRATNT PLANES TS CALCULATED
C THTIS ACCOMPLISHES TWO THINGS

C (1) AN EXACT PT., (X1) TN THE PLANE TS LOCATED

C (2) AN EXACT DTSTANCE(ALPHA) FROM X0 TO X1 TS CALCULATED

Cii********k********************************%********************
C********ﬁ*****i****%***ii***********i*****i********%************

FLAGYU=FLAG2

FLAG2=1

FLAG3=0

DO 15 T=1,KA

SAX(T):O

SAHD(T )=0

15 CONTINUE

DO U4 T=1,KA

DO 3 K=1,N1

SAX(T)=SAX(T)+A(NCV(T),K)*X0(K)

TF(FLAGY4.EQ.0)GO TO 24

SAHD(T )=SAHD(T )+NUM*A(NCV(I),K)*P(K)
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GO 70 3
24 CONTINUE
SAHD(I)=SAHD(I)+NUM*A(NCV(I),K)*dGRO(K)
3 CONTINUE
4 ALPHA(I)=(BC(NCV(I))-SAX(I))/SAHD(I)
**xx¥P 4TS ALPAA IS IN THE EQ. X1=XO+ALPHA*HGRO .IT WILL BE USED

TO ASCERTAIN THE SMALLEST BORDER OF TiHb FSASIBLE SPACE
TdIS WILL BE DONE BY SORTING FOR TdE SMALLEST ALPHA

DO 16 I=1,KA
DO 16 K=1,81

QaagaaQ

C***¥*¥SORT FOR THE LOWEST ALPHA OF Tdf HEWLY VIOLATED CONSTRAIJTS
Cx**%% [P PLAG6 = 2 PIND THE LARGEST ALPHA( SEARCH FROM INFEAS. SPACE)
C
TRIAL=1.E-7
IF(PLAG6.GT.0)TRIAL=1.E-14
NM=1
NCS(1)=1
ALPO=ABS(ALPHA(1))
DO 5 I=1,KA
IF(FLAG6.GT.0)G0 TO %8
IF(ABS(ABS(ALPHA(I))=ALPV).LT.TRIAL)GO 10 52
33 CONTINUE
IF(FLAG6.NE.2)G0 TO 43
IF(ABS(ALPHA(I)).LT.ALPO)GD 20 5
G0 T0 52
4% CONTINUE
I#(ABS(ALPHA(I)).G?.ALPO)GO TO 5

52 IF(I.EQ.1)G0 TO 5
ALPO=ABS(ALPHA(I))
Ni=1

5 CONTINUE
K=1
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IF(FLAG6.EQ.2)FLAG6=0
NFLAG10=0

C
C**%x¥*ONLY ONE CONSTRAINT HAS THE LOWEST ALPHA.
C
IF(WM.EQ.1)GO T0 7
C
CX*¥**%xHOW MANY OF THESE CONSTRAINTS dHAVE ALPHA'S = TO THE LOWES?
C ALPHA AND WiHA* IS THEIR NUABER( SZT #C3).
c
DO 6 I=1,NH
IF(ABS(ABS(ALPHA(I))=-ALPO).GT.TRIAL)GO T0 6
NCS(K)=I
K=K+1

6 CONTINUS
IF(NM.BQ.2)HCS(2)=2
K=K-1
7 CONPINUE
KF=K
C**************************************************************
C**************************************************************

THIS SECTION EZXAMINES TdE NEWLY ACQUIRHED CONSTRAINTS.
IF IT DETERMINES THAT IT JdAS FOUND A dEW ONE THEN
FLAG6 IS RESET 10 O. FLAG6 IS NOT ZERO IF IT HAS BEEN
T?dROUGH DROP. NTOC CONTAINS ALL OF TdAE PREVIOUSLY
VIOLATED CONSTRAINTS.

aQaQaaa

C***************************************************************
C***************************************************************
IP(PLAG6.EQ.O0)GO TO 63
DO A8 I=1,KF
DO 66 II=1,KOF0
66 IF(NCV(NCS(I)).EQ.NTOC(II))GO 70 68
WRITE(6,335)8CV(JCS(I))
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335 FORMAT(I3,' DOES NOT MATCH THOSE THAT WERE DROPPED')
WRITE(6,381)X0F0,(NTOC(IT),TI=1,K0F0)
FLAG6=0
GO TO 63
68 CONTINUE
TF(KO.EQ.0Q0)GO TO 73
DO 69 T=1,K0
DO 67 1I=1,KOFO
67 TF(NCV1(I).EQ.NTOC(TI))GO TO 69
WRITE(6,335)3CV1(T)
WRITE(6,381)KOFO0, (NTOC(TT),TT=1,KO0F0)
FLAG6=0
GO TO 63
69 CONTINUE
C***xi*i*ii*i**i*****iii**ikiﬁ**ﬁ**iaiti****iiiii**axi*****i*ii

C

C IF ALL OF THE SAME CONSTRAINTS ARE RE~ACQUIRED
C THEN ASSUME A CONSTRATNED EXTREMA AT X0
C

C*i****i*i%h***ﬁ*t*f***iﬁ***iﬁtf***:*iii**i***iifi****i***i****
73 CONTINUE
IF(KF+K0.NE.KOF0)GO TO 63
CALL FUNCT(XT,YO,N1,NUM)
CALL GRAD(XT,GRO,N1)

FLAG3 =1
RETURN
63 CONTINUE

C
Ch%%éx ONLY THOSE CONSTRAINTS WITH ALPHA'S EQUAL TO THE
c LOWEST ALPHA WILL BE ADDED TO THE MANIFOLD,
c

WRTTE (6, 304 )ALPO,K, (NCV(NCS(I)),T=1,K)

304 FORMAT('THE SMALLEST ALPHA=',E13.6,

1' FOR',T3,' CONSTRAINTS.'/!THEY ARE',20T3)

C
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Cx*¥%% PJaSHE X0'S ARE I ©HE CONSTRAINT PLANE.
C
DO 8 I=1,N1
IF(FLAG4.EQ.O0)GO 170 25
XO(I)=XO(I)+ABS(ALPHA(NM))*P(I)
GO TO 8
25 CONTIWUE
XO(I)=X0O(I)+ABS(ALPHA (M) )*4GRO(I)
8 CONTINUS
WRITLE(6,410)81,(X0(1),I=1,41)

410 FORMAT('?HE KEW XO CALC. WITH ALPA IS'/HE13.6)
CALL GRAD(XO0,GRO,N1,dUM)
CALL FUNCT(XO0,YO,H1)
WRITE(6,303)Y0,H#1, (GRO(I )

303 PORMAT('F(X0)=" b13 6/'GRA

18 CONTINUE
KA=0
K8=0
K8S=0
IF(KOF.HE.0)GO TO 47
KOF=1
MNB(0)=0
IP(KP.GE.41)G0 T0 9
30 TV 49

47 CONTINUE

to ,.
AU

) 'UNB13.6//7)

c
C***¥x SCAN THH DIFFERENCE BETWEEW THE OLD VIOLATED CONSTRAINTS
C AND PHOSE DTHAT ARE STILL BEING VIOLATED
C

DO 27 I=1,KOF

DO 26 J=1,KO0

26 IF(NCVO(I).EQ.NCV1(J))30 T0 27

KS=K3+1
c
Cx*x*% KSS COUNTS OWLY THE NO. OF OLD CONSTRAINTS TO BE
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C DROPPED THAT ARE DETECTED BY Tdf CONSTRAIJYT TEST

KSS=K55+1
MuB(XKS)=1I
27 CONTIWUE
C
Cr**%x LACESS COASTRAIWTS WILL BE DETwCTED AND DROPPED
C
R E R R e e e 2 2 e T
CAERERHXKEHK ALK KRR ERH LR R A H KK ER AR AR AR R K AR LXR LR KR AR TRA KRN

C HERE WE ARE CONCERNED THAT SPACE IS COMPLETELY

C SPAWNED AND TdE PROJECTION VECTOR IS TOTALLY DEFINED
C LEAVING NO ORTHOGONAL COMPONERT. DROP WILL DETERMINGS
C Td0SE CONSTRAINTS 70 BE DROPPED.

C-X-****-X-*************-X-*****************************************

C***************************** ¥ K % KKK K KKK KKK TR KK KK F K KKK KR KK KK KN
IF((KF+KO-XKS) . LD.H1)30 T0 55

9 CONTINUE
CALL DROP(KU,dCV1,KH#,dCV,HC3, PLAG3,FLAG6, P, X T, NTOC,KOPO, UM )
WRITE(6,381 )KOFO, (H70C(1),I=1,K0R0)
381 FORMAT('IP',NI%,' ARE REAQUIRED AN EXTREMA IS ASSUMED')

IF(FLAG3.EQ.1)GC T0 65
IF(FPLAG6.EQ.3)GD O 21

Crxx%x% X2 E P T I ERE L L L LT L L LT L L L E L L L L LR SRS L LSS LS EE T L L L S0 R RS R RS & &R E R R E

C *
C I PFLAG6=3 BN THE SEARCH VECTOR POINTS IAT0 FEASIBLE *
C SPACE. IF TdAERE ARE EQUALITY CONSTRAIWNTS PRESENT TdbN *
C PEY ARE KgPD AWD PROJECTIONS ARE MADE ON Tds#. IF *
C NOJE ARE PRESEANT 2di2§ RETUR§ TO TdE DFP MuTnOD IS JADE. ¥
c *
CRHEXE KKK AR KKK KR LR R E TR KK EHHR KKK AR E AR KRR KK AT HR KKK KR KKK
RETURN

55 CONTINUE
I#(WEC.£Q.0.0R.KS.EQ.0)G0 10 T1
L=0
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KIND1=1
C
C*¥*%%% YWE MUST SCAN THE LIST OF CONSTRAINTS TO BE DROPPED TO DETERMINE
C IF ANY OF THEM ARE EQUALITY CONSTRATNTS, TF ONE IS THEN
C IT WILL DROPPED FROM THE LIST,.
C

54 CONTINUE
DO 70 I=KIND1,KS
DO 70 J=1,NEC
TF(NCVO(MNB(T+L)) . NE,(NLEC+J))GO TO 70
IF(T.EQ.KS)GO TO 59
L=L+1
DO 61 KIND=T,KS~1
61 MNB(KIND)=MNB(KIND+1)
GO TO 58
70 CONTINUE
GO TO 71
58 KS=KS-1
KTIND1=T
GO TO 54
59 KS=KS-1
71 CONTTINUE
IF(KS.EQ.0)GO TO 49
TF(K0.GT.0)GO TO 72
WRTTE(6,321)KS, (HCV(HCS(T)),T=1,KS)
GO TO U9
72 CONTINUE
WRITE(6,321)KS, (NCVO(MNB(T)),T=1,KS)
321 FORMAT(I3,' CONSTRAINTS WTLL BE DROPPED. THEY ARE ',20Tl)
49 CONTTNUE
TF(KO.EQ.0)GO TO 29
C*ii&****ﬁi’:*i&#******ie**i’:**i*i&*******i**********************i&i&*****i*’
C AT THTS POTNT WE UPDATE THE NCVO ARRAY BY
C DROPPTNG OFF THE CONSTRATINT NOT STILL
C VIOLATED. SINCE WE ASSUME ALL PLANES
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C
C
C
C

C

TO BE LTNEARLY INDEPENDENT THEN THE NUMBER OF
CONSTRAINTS VIOLATED CAN NEVER BE GREATER THAN
THE DIMENSIONS OF SPACE.

U 2 22 2222222222223 222 2222322222222 2222222222 22222 R3]

56
57

28
29

IDD=0

DO 28 I=1,KO
IF(KS.EQ.0)GO TO 57
TF(KSS.EQ.0)XSS=1
DO 56 J=KSS,KS
TF(NCV1(T).EQ.NCVO(MNB(J)))GO TO 28
CONTINUE

IDD=IDD+1
NCVO(IDD)=NCV1(T)
CONTTNUE

KO =K0~KS

CONTINUE
IF(KS.EQ.0)GO TO 48
NSN=-1

C¥%%%% THIS ROUTINE CALCULATES AND UPDATES THE PROJECTION MATRIX(AAT2)

C
c

48

Ly
322

39

31

THE ARGUMENT MNB HAS NO EFFECT TN SPAN FOR SUBTRACTTON

CALL SPAN(NCVO,MNB,IDD,NSN,TO)
CONTINUE

TF(KF.EQ.0)GO TO 39

DO 44 T=1,KF

NCVO (KO+T )=NCV(NCS(T))

WRITE (6,322 )KF, (NCV(NCS(TI)),T=1,KF)
FORMAT(T3,' CONSTRAINTS WILL BE ADDED. THEY ARE',20T4)
NSN =1

CALL SPAN(NCV,NCS,KF,NSN,T0)
CONTINUE

KC=KC+1

DO 31 I=1,N1

P(1)=0.0



9L

WRITE(6,333)
333 FORMAT(‘THIS IS THE PRESENT PROJECTION MATRTX')
WRTTE(6,314) (N1, (AAT2(T,J),J=1,N1),T=1,N1)
DO 40 J=1,N1
DO 40 I=1,Nt

C
Ck*%#%% p TS THE PROJECTION OF THE GRAD ON THE CONSTRATINT
C MANIFOLD. IT IS THE NEW SEARCH VECTOR
C
IF(T.NE,J)GO TO 16
P(I)=(1.-AAT2(I,Jd))*GRO(J)+P(T)
GO TO 40
16 P{T)=-AAT2(T,J)*GRO(J)+P(T)
40 CONTINUE
PT=0.0
DO 42 T=1,N1
42 PT=PT+P(I)*%2
KOF =KF +KO
PT=SQRT(PT)
C
Ce*%%% TF PT=0 AND GRAD DOES NOT POINT INTO FEASTBLE SPACE
C THEN A CONSTRAINED MAX(MTIN) HAS BEEN MET,
C
IF(PT.GT..001)GO TO 19
FLAG3=1
GO TO 65

19 CONTINUE
ClUH IR IR RN A KRR R AR R AR KRR R R AR AR R RN AR AN R R AR RN AR AR IR AR AR R RN K

IF WE HAVE DONE A SMALL STEP INTO FEASTBLE SPACE
THEN WE WILL CHECK AT THIS POINT TO DETERMINE TF
THE NEW CONSTRATNT MANTFOLLD CONTATINS THE
EQUALTTY CONSTRAINTS. THIS NEED ONLY BE DONE AT
A POTNT WHERE THE PROJECTION VECTOR POINTS
DIRECTLY AWAY FROM THE ORTGTNAL POTNT WHERE ALL

QOO0
® ok ok %k ¥ R K



LL

C
C
C
C
C

C

OF THE CONSTRAINT PLANES TINTERSECTED., THIS IS
DETERMINED BY:

*
*
+1=(X0-XT)/ABS(X0-XT ) ¥pP/PT %
%
x

ERRARKARRKR R R AR AR RR AR R R AR R NRRRRKR R RKR AR AR RN RN RN AR NN EN

12

30

IF(FLAG6.EQ.0)GO TO 11

XTD=0.

XTDT=0.

DO 12 I=1,N1

XTD=XTD+ (X0 (T )~XT(T))%%2
XTD=SQRT(XTD)

DO 30 I=1,N1
XTDT=(X0(I)=XT(I))*P(I)/(XTD*PT )+XTDT

C##%%#% CHECK TO SEE IF ALL CONSTRAINTS ARE GENERATED

C

C

387

IF(XTDT.LT.0.0)GO TO 11
IF(ABS(ABS(XTDT)~1.).GT.1.E~12)G0O TO 11
WRITE(6,387 )ABS(ABS(XTDT)~1.)

FORMAT('MUST BE > THAN 1.E-~12 BUT IS',E14.6)

C#%%#%# SCAN MANIFOLD TO SEE IF ALL EQUALTTY CONSTRAINTS ARE PRESENT

C

32
33

37

M=0

TF(KF.EQ.0)GO TO 33

DO 32 I=1,KF
TF(NCV(NCS(I)).LE.NLEC.OR.NCV(NCS(T)).GT.(NLEC+NEC))GO TO 32
M=M+1

CONTINUE

IF(KO.,EQ.0)GO TO 37

DO 34 I=1,K0
IF(NCV1(I).LE.NLEC.OR.NCV1(T).GT.(NLEC+NEC))G0O TO 34
Mz=M+1 ‘
CONTINUE

CONTINUE
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Cx¥xx* ALL KQUALITY CONSTRAINTS ARE PRESENT WiEN H=HZC
c
IP(M.EQ.NEC)GO TO 36
DO 35 I=1,i1
35 X1(I)=Xi(1)
FLAG3=1
RETURN
36 FLAG6=0
KOFO=0
11 CONTINUE
REMURH
13 IF(FLAG2.EQ.1)GO 70 17
WRITE(6,%02)
302 PORMAT('NO CONSTRAINTS #AVE BEEN VIOLATED')
10 FLAG2=0
RETURN
17 CONTINUE

C****************************************************** X K% X% %K
Ku=0 TH® CASE WHERE TdE GRAD POINTS IN{TO FEAS. SPACE *
*
KO=KOP NO CONSTRAINTS WILL BE DROPPED FROM AAT2 *
*
KU<KOF S0ME CONSTRAINTS ARE TO BE DROPPED *
*
FLAGT=1 AN EXTREMA WAS POUJD ON TdAE LINE SEARCH *
b 2SS E AL R LT LTS E R T LS LI L LI TS E ST E L LS I TS L S ST T T ST L LT L LT LT L T L LT L T
IF(KO.EQ.0)GO TO 21
CALL GRAD(X1,GRT,i1,NUM)
IF(FLAGT.EQ.1)G0 TO 74
IF(KO.LT.KOF)GO TO 18
DO 79 I=1,i1
79 X0(I)=X1(I)
RETURKN
74 DO 78 I=1,N1
78 GRO(I)=GRT(I)

QaaaQaaaa
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24
27

25
29

32
33

34
ug

35
301

TF(KO.EQ.0)GO TO 29

DO 27 T=1,KO

X1(T)=0.

AMT (T )=B8MV
TF(NCV1(T).,LE.NLEC4+NEC)AMT(I )=-AMV

DO 24 J=1,N1
LH(T)=X1(T)+A(NCVI(T),J)»*2
X1(T)=SQRT{X1(T))

DO 25 T=1,KO

DO 25 J=1,N1
X0(Jd)=XK0(J)+A(NCVI(T),d)/(X1(T)*AMT(T )*5,E5)
CONTINUE

CONTINUE

TF(KF.EQ.0)GO TO 48

DO 33 T=1,KF

X1(1)=0.

AMT (T )=AMV
TE(NCV(NCS(T)).LE.NLEC+NEC )AMT(T )=«AMV
DO 32 J=1,N1

X1 (T)=X1(T)+A(NCV(NCS(T)),d)s=2
X1(T)=SGRT(X1(I))

DO 34 I=1,KF

DO 34 J=1,N1 ,
X0(J)=X0(J)+A(NCV(NCS(I)),d)/(X1(T)*AMT(T)*5,E5)
CONTTNUE

CONTTNUE

DO 35 I=1,N1

NCVO(I)=0.0

NCV1(T)=0.0
WRITE(6,301)81,(X0(T),T=1,N1)

FORMAT('WwE WILL START AT THE FOLLOWING POINT & FOLLOW THE GRAD'

*/NE13.6)
RETURN
END
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23
21

65

53

IF(KO.LT.KOF)G0O TO 18

DO 23 I=1,{1
X0(I)=X1(I)
GO TO 39

IF(AEC.HE.0)GO 70 75

FLAG2=2

KOF=0
CONTINUE

DO 5% I=1,u1
X1(L)=x0(I)
DO 5% J=1,N1
AAT2(I,J)=0.0
RETURN

CREXXKEXEXEEXK KX KX XX KX LXK XXX XXX R LR XKL REX R ERK X XA KN X XXX EX

C
C
C
C
C
C

IF THE GRAD POINTS INTO FEASIBLE SPACE IT
STILL HAVE TO SATISPY fdl ZQUALITY COJASTRAINTDS
WILL COWTINUE
ONTO TdE BEQUALITY CONSTRAINTS.
CONSTRAIWTS ANIFOLD

dENCE TdE GRAD

TO BE PROJECTED

SILL

ONLY TdE EQUALITY
WILL BE KEPT.

* kx k ¥k ¥

HEERKEEEEL K LEEEEE LR LR XL L LR LRI TR LA XXX R XX XXX XXX XXX XX

75

DO 76 I=1,il
DO 76 J=1,il1

76 AAT2(I1,J)=0.0
I10=0
KO0=0
K#=NEC
DO 77 I=1,KF
NCV(I)=NLEC+I
NCs(I)=I
NCVO(I)=NLEC+I
7 NCV1(l)=NLEC+I
T0 48

ND
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SUBROUTTWE SPAN(NO,NOC,KN,KSN,T0O)

thx*tﬁx***x**ki*x*ktﬁﬁwtxi*tﬂtx***ithk**ﬁkk*xtwﬁiknﬂrk**i**ﬁ***ﬁ%**i*%ﬁ

C
C THTS ROUTINE CALCUOLATES AND UPDATES THE PROJECTTION MATRIX(AAT2)
C T'T USES THE GRAM-SCEMTDT MeETHOD AND TS WRTTTEN TN THE

C USUAL HMATRTX NOTATION,

C

C

AR RNARN AR E AR AN R AR AN KRR RNNRNANARRKERN (AR R A RN AR AN KA AR RN ANNA RSN ARLRNR AN DTN RN T RAN AR
COMMON X0(10),X1(10),H(10,10),4(20,10),GR0(10),BC(20),
1M1, HC, AAT2(10,10),KOF ,HCVO(20),NLEC,NEC, NGEC, NGEX, KC
DTMEZNSTON AL(10,10),N0C(10),H0(10),TDPAST(10)
REAL TDENT

C
Cuswan TF NSNCKO SET AATZ2=0.0 THEN RECALCULATE AATZ2 WTTHOUT
C THE DROPPED CONSTRATNTS,

IF(I0.EQ.0)IT=0

T0=1

JK=1

TF(HSN.LT.C)GO TO 10
12 CONPTNUE
D0 1 J=JK,KN
DO 1 K=1,H1
AL(J,K)=0.0
9 CONTTHUE
DO 7 T=JK,KN
TF(HSH.GT.0)GO TO 14
HOC(T)=T
14 CONTTAUE
TI=TT+1
TDPAST(IT)=NO(NOC(T))
WRTTE(6,304)N1, (A(NO(NOC(T)),d),J=1,N1)
304 FORMAT('THTS IS THE PRESENT CONSTRATHT EG. TH SPAN'/NE13.7)
DO 3 J=1,H1
DO 3 K=1,H1
TF(J.NE.K)GO TO 23

-
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ChExi

1"

20
7

16

AL(T,Jd)=(1.0~8AT2(J,K))*A(NO(NOC(T)),K)+AL(T,J)
"GO TO 3

AL(T,J)==AAT2(J,K)*A(NO(NOC(T)),K)+AL(T,J)
CONTTNUE

ALABS=0.0

DO 4 K=1,N1

ALABS=ALABS+AL(T,K)%%2
ALABS=SQRT(ALABS)
IF(ALABS.LT,.0000000001)G0 TO 7

DO 5 J=1,N1

AL(T,J)aAL(T,J)/ALABS

DO 6 K=1,N1

DO 6 L=1,H1

TF(L.LT.K)GO TO 19
AAT2(K,L)=AAT2(K,L)+AL(T,K)*AL(I,L)
AAT2(L,K)=AAT2(K,L)

CONTINUE

CONTTNUE

RETURN

SUBTRACT DIMENSTONS TO LOWEST ONE TO BE REMOVED

CONTTNUE

DO 11 J=1,N1

DO 11 K=1,N1

AAT2(J,K)=0.0

DO 2 J=1,KN
TF(NO(NOC(J)).LT.(TTI~KN))GO TO 16
DO 17 T=TT,TT~KN, -1

DO 17 K=1,N1

DO 17 L=1,N1

TF(L.LT.K)GO TO 20
AAT2(K,L)=AAT2(K,L)~AL(T,K)%AL(T,L)
AAT2(L,K)=AAT2(K,L)

CONTTNUE

RETURN

CONTTHUS
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oo NeX®]

21

15

JK=TT

DO 8 J=1,71T

DO 8 K=1,KN
TIF(NO(NOC(K)).KHE,IDPAST(J))30 TO &
IF(J.GE.JK)GO TO 8

JK=d

CONTINUE

JX IS EQUAL TO THE LOWEST AL TO BE DROPPED.
NEED NOT BE RECALCULATED.

TF(JK.LT.2)GO TO 15
DO 13 T=1,JK-1

DO 13 K=1,N1

DO 13 L=1,N1
TF(L.LT.K)GO TO 21
AAT2(K,L)=AAT2(K,L)+AL(T,K)*AL(T,L)
AAT2(L,K)=AAT2(K,L)
CONTINUE

TI=JK~1

GO TO 12

END

THE ONES BELOW THIS
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SUBROUTINE DROP(KO,NCV1,Kf,NCV,NCS,FLAG3,FLAG6,P,XT,NTOC,KOFO, NUM)
COMMON X0(10),X1(10),4(10,10),A(20,10),GR0(10),BC(20),
1N1,HC,AAT2(10,10),KOF ,NCVO(20),NLEC,NEC,NGEC,NGEX, KC

DIMENSTON NCV1(10),NCV(10),NCS(10),P(10),XT(10),AHMT(10),
%JGRO(10),NTOC(10)

REAL LAMDA

TNTEGER FLAG3,FLAG6,FLAGT

C***ﬁ%****%ﬂ%’:*k****'}-‘*i\'*ﬁ'***xk*"n***rwtk****%*ki\*kkw***w***ﬁ*'&i**

C
C FLAGE6=1 ALERTS CHK THAT A NEW POINT TS BEING RETURNED
C AND TIT TS FEASTBLE SPACE.
C
C =2 ALERTS CHK THAT THE NEW POINT IS TN
C TNFEASTBLE SPACE.
C
C =3 ALERTS CHK THAT THE NEW POTNT IS IN INFEASTRLE SPACE
C AWD ONLY THE EQUALITY CONSTRATNTS ARE KEPT
C
C FLAG7=1 WHEN THERE UNIT CONSTRATHTS PRESENT
C
L R e L T R
FLAGT =0
KOFO=KF+KO
B=0

DO 28 T:'\,N'\
P(T)=GRO(T)

28 B=B+GRO(T)#%2
AGRO=SQRT(R)
DO 43 T=1,N1

43 UGRO(T)=GRO(T)/AGRQ
K=90
NT=NLEC+{EC+NGEC
IF(X0.EQ.0)GO TO 3
DO 2 T=1,K0
IF(NCV1(T).GT.NLEC.AND.NCV1(T).LE.KLEC+NEC)FLAGT=1
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C

w N

5
45

NTOC(T)=NCV1(T)

CONTTNUE

CONTINUE

IF(KF.EQ.0)G0 TO 45

DO 5 T=1,KF
TF(KCV(NCS(T)).GT.NLEC.AND.NCV(NCS(I)).LE.NLEC+NEC)FLAGT=1
NTOC (T+KO)=NCV(NCS(T))

CONTTNUE

CONTINUE

Céx#%% AMT TS USED TO SET THE SENSE OF THE NORYALS

C
C

21
330

38

AMT>0 WHEN CONSTRATNT TS LE TYPE & GRAD POTNTS TO
FEASTBLE SPACE

FLAG6H=1
WRITE(6,330)NTOC(T),
FORMAT ('"THE CONSTRAT
AMV=1,

TF(KO.EQ.0)GO TO 42
DO 37 I=1,KO
TF(NCV1(I).GT.NLEC.AND.NCV1(T).LE.(NLEC+4EC))G0O TO 37
B8=0.

DO 36 J=1,N1

B=B+A(NCV1(T),J)*(X0(J)+UGRO(J)*.58-5)
FORMAT(*I,NCV1(I),BC,B',213,2E13.6)
TF(BC(NCV1(T))~B.LT.0.AND.KCV1(T).LE.NLEC)GO TO 41
TF(BC(NCV1(T))~B.GT.0.AND.NCV1(I).GT.NLEC+NEC)GO TO 41
CONTINUE
CONTINUE

IF(KF.EQ.0)G0 TO 47

DO 39 I=1,KF
TF(NCV(NCS(T)).GT.NLEC.AND.NCV(NCS(T)).LE.NLEC+NEC)GO TO 39
B=0,

DO 38 J=1,H1

B=B4+A(NCV(NCS(T)),Jd)*(X0(J)+UGRO(J)*.5E~5)
IF(BC(NCV(NCS(T)))~B.LT.0.AND.NCV(NCS(T)).LE.NLEC)GO TO 41

N1

I=1
NTS TO BE DROPPED ARE',20T3)
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TE(BC(NCV(NCS(T)))~B.GT.0.AND.NCV{(NCS(T)).GT.NLEC+NEC)GO TO 41
39 CONTINUE
47 CONTINUE
4O AMV=-1.
FLAG6=2
41 CONTINUR
C***%k******i**%**ﬁ*ﬁ**k********i*w*k*w%*i**k**%ﬁ*k****ﬁﬁ*t******ﬁ%*
C****ﬁ*k*k**w******r**********wikw**ni*i****k*ku****t***%******x****

FROM 21 TO HERE TS USED TO SORT THE CONDITTON

WHERE THE GRAD POINTS INTO FEAS. SPACE FROM X0

AMV=~1 WHEN GRAD POINTS TNTO FEAS. SPACF. TBIS TS
KHOWN WHEN THE OHLY CONSTRATNT VIOLATED IS AN EQUALTTY

OOOaO0

C*i****n**xt**i**ik*ﬁkﬁ**k*x*******%**ﬂ***%**ﬁ***********w**k%******
C*k******%*wk**kﬁ***%ﬁwﬁ***xk**k%x%t*ﬁ*i%k*t*i%*i**ﬁ*****%%%%%*%****
DO 26 T=1,N1
P(T)=GRO(T)
XT(T)=X0(T)
DO 26 J=1,11
26 AAT2(T,J)=0.0
KOF =0
TF(FLAG7.NE.1)GO TO 4y
WRTTE(6,318)
318 FORMAT('ONLY THE EQUALTTY CONSTRAINTS WTLL BE KEPT')
FLAGH=3
RETURN

CREE AR R AR R A IR AR AR R R AN KRR RN AR N A AR R SR AR A AR R RO R RN R AR AR AR R R R AR ARk

C
C THE REST OF THE SUBROUTINE CALC'S A VECTOR THAT TS THE
C AVERAGE OF ALL THE CONSTRAINT NORMALS AND TS GTVEN A

C DIRECTION OPPOSITE TO THE GRADIENT VECTOR.

C

C

RERRR KRR R A AR AR AR L AR AR R R R AN R AR T RN R A AR AR R AR A AR KRNI R R AR AN AN AN AR AR

44 CONTINUE
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SUBROUTINE PEASPL(FLAGS)
C-X-*************** % %K K H K KK A KKK KK I KKK KK KKK KKK KKK KA K KKK KK KKK KK KKK KK KKK
T4IS ROUPINE BUILDS A SIMPLEX TABLEAU CALLZD THZ AUG #MATRIX
TdE MATRIX IS COJSTRUCTED ROW BY ROW AND IS STRUCTURED AS FOLLOWS:
AUG = [ A :B:C
A - THIS IS TuB COdSTRAIND HMATRIX WITnOUT X'S>0
B - T4IS IS A DIAG. MATRIX TdAT CONSISTS OF Tds POS.
SLACK'S(JL3C) AND PdE POS. ARTIFICIALS(WEC).
C - 2dIS IS A MATRIX OF ALL ?dE HEG. SLACKS(WGEC).
KEXEEEEEREXEEXERLE XXX XXX X XXX XX XX XX XXX XXX LXK XA XX R XXX XK KX
COMMON X0(10),X1(10),4(10,10),A(20,10),GR0(10),BC(20),
141,.4C, AAT2(10,10),K0#, HCVO(20),dLEC, HAC, 4320, ddaX, KC
DIAZN3L0d C1(%0),C2(%0),A04(10,30),B8CC(20),IPVI(2C),Cl(2u)
WRITE(6,%10):4C, NGEX, {LEC, tsC, i1
310 PORHAT('dC, dG8X, ALEX,48C, H11,513)
IdTBGER PLAGS, IPVIK

oXo e R R e XPKe!

(@]

Cr*#x%k TR ks #NO. OF BQUALLTY CONSTRAINDS IS £QUAL TO Tdik PRUBLEM
C DIMENSIOAS.
C

LR (NEC.LT.1W1)G0 T0 27

22 WRITE(6,308)

308 FORMAT('T00 MAJY ZQUALITY CONSLRAINYS #POR 1dE DEGREES OF FREZDOH')

FLAGS=1
RETURN

27 CONYINUE
NC1=idC=-IAGEX
bo 4 I=1,uC1
BCC(I)=3C(I)
IPVIK(I)=0

LOAD A INTO AUG(A) Ruw I

PPN P]

DO 1 J=1,41
1 AJG(I,d)=A(I,Jd)
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C
c LOAD 1 TNTO AUG(B) TN THE PROPER DTIAGONAL POSTTTON
C
DO 2 J=1,NC1
AUG(T,N1+J)=0.0
2 TF(T.EQ.J)AUG(T,N1+J)=1.0
TF(NGEC.EQ.0)GO TO U
c
C LOAD -1 TNTO AUG(C) FOR THE ARTIFTCTALS OF GE CONSTRATNTS
C
DO 3 J=1,NGEC
AUG(T,NC14+N14J)=0.0
3 IF(T.GT.(HLEC+NEC) . AND. (T—~(NLEC4NEC)).EQ.J)AUG(T,N1+NC1+J)=~1.0
4 CONTTHUE
DO 7 T=1,NCT+N1+NGEC
C1(1)=0.0
C
C THIS ALLOWS THE “CJ" ROW TO CONTATN ONLY O RXCEPT
C WHERE THERE WAS AN = TYPE COMNSTRATNT OR WHERE
C AN ARTIFICTAL HAS BEEN ADDED. THE "CJ" ROW TS
C TERMED C1 TN THE PROGRAM. C2 IS THE COST ROW.
C

IF(T.LE.(N1+NLEC).OR.T.GT.(N1+NC1))G0 TC 7
C1(T)=1.0
7 CONTINUE
DO 30 I=1,NC1
30 CB(T)=C1(T+N1)
17 CONTINUE
WRTTE(6,301)
301 FORMAT('AUG MATRIX')
WRTTE(6,302)(N1, (AUG(TT,JdJ),Jd=1,N1),TT=1,NC1)
302 FORMAT(NE10.3)
WRTTE (6,302) (HC1+NGEC, (AUG(IT,JdJ),dJ=1+N1,NC1+HNGEC+N1),TT=1,NC1)
C
C#k*%#% CALCULATE THE COST ROW
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DO 8 T=1,NCT1+N1+NGEC
C2(1)=0.0

J IS THE ELEMENT NO. IN COL. T

a0

DO 5 J=1,NC1
5 C2(I)=C2(T)+CB(J)=AUG(J,T)
c2(1)=C1(T)-C2(T)
8 CONTTNUE
WRITE(6,330)
330 FORMAT('THIS IS THE COST ROW')
WRITE(6,304)C2(LL),LL=1,NC1+N1+NGEC
304 FORMAT(10E10.3)
C
C#x%x% THE COST ROW IS SCANNED TO DETERMINE T# TN FEASIBLE SPACE
c
DO 9 T=1,HC1+N1+NGEC
TF(C2(T).GE.D)GO TO 9
C
Cxxx%x [F A NEG COST IS FOUND THEN THE PT. NOT YET FEASIBLE
C

GO TO 10
9 CONTINUE
C
C#%%%% THIS IS A FEASTBLE PT., CANDIDATE
C
GO TO 18
10 CONTINUE
I=1
DO 11 J=1,NC1+N1+NGEC
C .
C THE COST ROW TS SCANNED #0R THE LOWEST VALUE
C THE T'TH COL. I3 THE PIVOT COL.
C
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11 TF(C2(J).LT.C2(T))T=d

C
C CALCULATE THE RATTO'S AND ¢TND TH® PIVOT ELEMENT
C BY FINDTWG THE ROW WITH TH= LOWEST RATIO
C
BC12=1.E19
J=1
DO 12 L=1,NC1
TF(AUG(L,T).GT.0.)GO TO 24
BC1=1.E20
GO TO 23
24 BC1=3CC(L)/AUG(L,T)
23 CONTTHNUE
TF(RC1.GE.BC12)GO TO 12
J=L
BC12=8BC1
12 CONTTNOURE
TF(BC12.LE.1.E18)G0 TO 238
WRITE(6,315)T
315 FORMAT('COLUMN' ,T3,' TS ALL NEGATIVE OR ZERQO')
FLAGS =1
RETURN
28 CONTINUE
C
Ceu*#% TPYTK KEEPS TRACK OF THE ELEMENTS TN THE BASTS. TPVTK(J)=I
C MEANS THE J'TH BASTS VARTABLE =THE I'TH VARTABLE
C
TPVTK(J)=T
C
Cé¥x%x AUG(J,T) TS THE PIVOT ELEMENT AND THE J'TH BASE VAR.
C TS REPLACED BY THE T'TH VARTABLE
Cxx#%%% NOW NORMALTZE THE PTVOT ROW
C

BCC(J)=BCC(J)/AUG(J, T)
AUGT=AUG(J,T)
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DO 14 L=1,NC1+N1+NGEC
14 AUG(J,L)=AUG(J,L)/AUGT

C
C¥®w=xx THE NEXT TABLEAU WILL NOW BE DEFTNED
c
PO 16 L=1,NC1
C
Cu%%%x SKIP THE PIVOT ROW
C

IF(L.EQ.J)30 TO 16
AUGT=AUG(L,T)
BCC(L)=BCC(L)~BCC(J)*AUGT
WRITE(6,314)L,J,BCC(L),BCC(J),AUGT
DO 15 K=1,NC1+N1+NGEC
AUG(L,K)=AUG(L,K)~AUG(J,K)*AUGT
314 FORMAT('BCC(L)=BCC(L)~BCC(J)*AUGT'/2T3,3E13.6)
15 CONTTWUE
16 CONTINUE
WRITE(6,305)d,1T
305 FORMAT('PIVOT ELEMENT TS',2T3)

C
C AT THTIS POTNT THE BASTS VARTABLES MULTIPLTER COEFFICENTS
C ARE UPDATED,
C

CB8(J)=C1(I)

GO TO 17

18 CONTINUE

C

Ce##%% THTS IS A FEASTBLE PT. CANDIDATE
Cx#»%x% ALL BCC'S WILL BE SCANNED TG BE SURE THEY ARE POSTTTVE
c
DO 19 I=1,NC1
IF(BCC(I).GE.0.0)GO TO 19
GO TO 21
19 CONTINUE
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C
Ck##%#% SET THE TNITTAL FEASTBLE POTNT
o
DO 20 I=1,NC1
20 X0(T)=0.0
DO 29 T=1,NC1
TF(TPVTK(I).GT.0.AND.TPVTK(T).LE.N1)XO(TPVTK(T))=BCC(TI)
29 CONTINUE
WRTITE(6,320)
320 FORMAT('THIS THE INTTIAL POINT!')
WRITE(6,321)N1,(X0(T),T=1,N1)
321 FORMAT(NE13.6)
RETURN
21 WRITE(6,300)
300 FORMAT('NO INITTAL FEASIBLE POTNT FOUND')
FLAGS5 =1
RETURN
END
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